Author: Morgan, A.F.D.
Paper Title Page
MO3C2 Diamond-II Electron Beam Position Monitor Development 168
  • L.T. Stant, M.G. Abbott, L. Bobb, G. Cook, L. Hudson, A.F.D. Morgan, E.P.J. Perez Juarez, A.J. Rose, A. Tipper
    DLS, Harwell, United Kingdom
  The UK national synchrotron facility, Diamond Light Source, is preparing for a major upgrade to the accelerator complex. Improved beam stability requirements necessitate the fast orbit feedback system be driven from beam position monitors with lower noise and drift performance than the existing solution. Short-term beam motion must be less than 2 nm/sqrt(Hz) over a period of one second with a data rate of 100 kHz, and long-term peak-to-peak beam motion must be less than 1 µm. A new beam position monitor is under development which utilises the pilot-tone correction method to reduce front-end and cabling perturbations to the button signal; and a MicroTCA platform for digital signal processing to provide the required data streams. This paper discusses the challenges faced during the design of the new system and presents experimental results from testing on the existing machine.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides MO3C2 [1.714 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MO3C2  
About • Received ※ 06 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 17 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP37 Measurements for Emittance Feedback based on Resonant Excitation at Diamond Light Source 492
  • S. Preston, L. Bobb, A.F.D. Morgan, T. Olsson
    DLS, Oxfordshire, United Kingdom
  In the Diamond storage ring, the vertical emittance is kept at 8 pm rad by an emittance feedback which modifies the strengths of skew quadrupoles. A new feedback using a stripline kicker to control the vertical emittance by exciting the beam resonantly at a synchrotron sideband is planned to avoid modification of the optics. This is crucial for the anticipated Diamond-II upgrade of the storage ring, which will have a much smaller equilibrium emittance than the existing machine. A larger coupling is therefore needed to keep the vertical emittance at the same level, potentially reducing the off-axis injection efficiency and lifetime. Measurements of the beam oscillation and emittance have been performed at the existing storage ring to characterise the effects of chromaticity and impedance on the optimal excitation frequency, where the emittance is increased significantly while the beam oscillation is kept low. The implications for simulating the emittance feedback for the Diamond-II storage ring are also discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP37  
About • Received ※ 02 September 2022 — Revised ※ 12 September 2022 — Accepted ※ 16 September 2022 — Issue date ※ 30 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)