

Beam Diagnostics for FRIB Comissioning

Steve Lidia, Facility for Rare Isotope Beams

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Facility and Instrumentation Challenges
- Diagnostic Systems for Linac Commissioning
- Target Imaging Systems
- Fragment Separator Systems

- Detector Development
- Summary and Look Ahead

Facility for Rare Isotope Beams*

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University
- Serving over 1,300 users
- Key feature is 400 kW beam power for all ions (e.g. 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - All elements and short half-live
 - Fast, stopped, and reaccelerated beams

*U.S. DOE designated FRIB as a National User Facility on 29 September, 2020

Challenges to Diagnostics and Instrumentation

- Handling intense, low energy ion beams (β = 0.03 0.60)
 Multiple-charge-state beam dynamics » A/Q ranges 3 – 7
 Ensuring low beam losses (< ~1 W/m)
 Robust, Fast Machine Protection Systems (35 μs)
 Safe operation of liquid lithium charge stripper
 400 kW heavy ion beam target and pre-separator systems
 High-rate Fragment Separator
- Operational flexibility requires 10⁵-10⁸ dynamic range in beam intensity; CW and pulsed modes
 - Challenging conditions for beam diagnostics and MPS
- Frequent retuning for various ion species
 - Each run extends 1-2 weeks
 - New radiation effects beamline operations interleaved with nuclear physics program

Primary Beam	No. benchmark beams	No. rare isotope beams
238U	23	1446
⁴⁸ Ca	4	104
⁷⁸ Kr	7	98
¹²⁴ Xe	4	64
¹⁸ O	1	21
⁸⁶ Kr *	2	27
¹⁶ O	1	38
³⁶ Ar *	1	28
⁸² Se	2	155
⁹² Mo	8	98
⁵⁸ Ni	4	130
²² Ne	2	10
⁶⁴ Ni	1	49

in month in the second of the

Diagnostics System Completed: Linac

Meets

Requirements

Х

Х

Х

X

Х

Х

х

Х

Х

Х

х

Х

Х

х

х

Х

Х

х

Beam

Measured

Х

х

х

х

Х

х

х

х

х

х

х

х

Х

х

х

х

Х

Х

BPM

BCM

ND

IC

HMR

О

•

Ο

ж

Collimator aperture in Folding Segment (FS1)

Beam position monitor in LS1

Intensity reducing screen in front-end

FC tics for FRIB Commissioning, IBIC 2022

Diagnostics for Front End and Linac Matching

Early test of beam acceleration, tuning through lattice transition, linac diagnostics, machine protection

- Cryomodule and inter-module diagnostics
 - Beam Position Monitor
 - Fast thermometry sensor
 - Halo monitor ring
 - Neutron monitors
- Commissioning Diagnostics station (D-Station)
 - Profile monitor
 - Beam position monitor
 - Beam current monitor
 - Halo Monitor ring Faraday cup
 - Si Detector

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

S. Lidia, Beam Diagnostics for FRIB Commissioning, IBIC 2022

D739 viewer

PM D0856

(X_rms, X_rms) = (6.8 mm, 4.5 mm)

(Y_rms, Y_rms) = (7.4 mm, 7.3 mm D812 viewer

50 40 30 20 10 0 -10-20-30-40-5

PM D0885

(X_rms, X_rms) = (7.1 mm, 6.8 mm

(Y_rms, Y_rms) = (3.9 mm, 4.0 mm D976 viewer

PM D0912

(X_rms, X_rms) = (6.0 mm, 5.9 mm

(Y_rms, Y_rms) = (6.3 mm, 7.1 mn

Diagnostics for SC RF Linac Commissioning

- Beam intensity (and differential loss) Beam Current Monitors, Faraday Cups (low power), BPMs
- Beam offsets BPMs (dense network)
- RF tuning (beam energy and phase) BPMs and narrowband receiver
- Beam profile and lattice tune Profile Monitors, Halo Monitor Rings and Beam Loss Monitors
- Transverse Beam emittance Profile Monitors
- Longitudinal phase space distribution Bunch Shape Monitor, BPM waveforms
- Beam losses Neutron Detectors, Ionization Chambers, Halo Monitor Rings, Differential BCM

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University *Interceptive diagnostics

Beam Position Monitors In Full Use

22:12

22:06

22:08

22:10

22:14

22:16

- 150 20-mm Button-type
 - (40, 50, 75, 100)mm diameter
- 2 High-aspect ratio, Shoebox-type
- BPMs installed and providing data
 - Position
 - RF phase and TOF measurements
- Used for steering correction with automated schemes
- RF cavity phase scans and beam energy measurements
- Analyzing multiple RF harmonics to limit cross talk effects
- Intensity used to cross-calibrate other measurements Charge State Distribution)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University 22:18

Automatic Tuning Algorithms Deployed

Cavity Retuning

- Few minutes to calculate field and phase of all LS1 cavities
- BPM phases are consistent within +/-1 degree between tuning model and measurement
- Successfully developed 4 ion species with 10 different energies
 - » Calculated energy after LS1 (15-40 MeV/u) is consistent with measured energy to within +/-10 keV/u
- Intensive beam studies have been conducted for LS2 and LS3 sections
- Cavity failure retune and rebalance
 - Routine can correct within 10 minutes can be improved to ~1 min
 - Energy difference <10 keV/u
- Trajectory correction
 - Based on BPM measurements
 - Uses Orbit Response Matrix (ORM)

Energy before 20.314 MeV/u Energy after 20.307 MeV/u

Several Types of Beam Loss Monitors are Used

- Ion chambers 1.5 L, parallel-plate design. Pressurized to 8 or 15 atm with N2 or Ar.
- Neutron monitors scintillator/PMT design
- Halo Monitor rings installed between cryomodules, instrumented as Faraday cups
- Differential Beam Current Monitors (DBCMs) multiple pairs of BCMs provide fast (15 μs) and slow (millisecond to second) detection

lichigan State University

ichigan State Universit

Target and Advanced Rare-Isotope Separator (ARIS)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

S. Lidia, Beam Diagnostics for FRIB Commissioning, IBIC 2022

Thermal Imaging System is Commissioned

- Monitoring beam on target and dump
 - Variations in position, distribution, intensity
 - Target temperature (to be completed)
- Interface to Fast Machine Protection System
 - Intensity and temperature changes monitored with fast detectors (to be completed)

Target Thermal Imaging System Is Calibrated

- The target system has been calibrated with an in situ blackbody source.
 - IR backlights through 'hole' in multi-position target
 - Identical cameras with visible or IR filters recorded image and calculate spatial/temporal average intensity
- IR signal is available for temperature measurement
- Calibrate against target emissivity
- Calibrate against beam power
- Will gain operational experience then commission photodiode detectors

Initial Thermal Imaging Results

- Primary beam is ⁷⁰Zn, 173 MeV/u
- 922 W (CW) beam power on static target
- Image is acquired in near-IR (~1 μ m)

Data-date: 2022/07/29 08:20:35

Fragment Separator Diagnostics

- Rare-isotope beam diagnostics to tune and characterize beam to experiments
 - Tracking detectors, time-of-flight detectors, particle-ID detectors, viewer plates, etc.
 - Concentrated in strategic locations, typically at image planes

- Dual Parallel
 Plate Avalanche
 Counters
 (PPACs)
- TOF Scintillator
 + PMT
- Viewer+camera
- Resolving slits
- Wedge assembly

Particle Identification Enabled With Diagnostic Systems

Fragment separation using "momentum – energy loss – momentum" separation method

On December 11, 2021, rare isotopes were produced by fragmentation of a Krypton-86 beam on a 3 mm thick graphite target. Se-84 isotopes were detected and identified by measurement of energy loss, total energy, and time-offlight with a stack of silicon detectors

Facility for Rare Isotope Beams

Experimental Program has Begun

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

S. Lidia, Beam Diagnostics for FRIB Commissioning, IBIC 2022

Instrumentation Upgrade Outlook

Primary beams

- Multiplex Faraday cup electronics
- Develop new OpenHardware BCM AFC board to manage BCM network
- BLM network improvements and predictive capabilities
- Gas sheet profile monitor
- Secondary beams
 - Large format delay-line PPACs (200x200 mm²)
 - Optical PPACs (MHz rates)
 - ELOSS: GXe detectors for high mass states (A>50) » LXe in study (A>80)
 - Fast electronic systems for detector readout

M. Cortesi, et al.,"Design and construction of a novel Energy-Loss Optical Scintillation System (ELOSS) for Heavy-Ion Particle Identification", submitted to Review Scientific Instrumentation, September 2022.

Dimension 30mm x 30mm Effec. Area 20.5mm x 20.5mm

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

S. Lidia, Beam Diagnostics for FRIB Commissioning, IBIC 2022

Summary

- All linac diagnostics systems have been commissioned
- Target and fragment separator diagnostic systems are commissioned
- Machine power ramp-up is commencing
 - First experiments at 1 kW
 - Next stage is 3 kW, 5-6 kW, 10 kW in 2023
- Diagnostic and detector development continues to support high primary beam power and high particle rates

Acknowledgements

H. Ao, B. Barnes, J. Brandon, N. Bultman, F. Casagrande, S. Cogan, J. Crisp, K. Davidson, E. Daykin, P. Gibson, I. Grender, L. Hodges, S.-H. Kim, W. Hartung, M. Hausmann, L. Hodges, K. Holland, M. Ikegami, M. Konrad, T. Larter, Z. Li, I. Malloch, G. Machicoane, H. Maniar, P. Manwiller, T. Maruta, B. Martin, D. Maxwell, D. Morris, P. Morrison, C. Morton, D. Omitto, P. Ostroumov, A. Plastun, J. Popielarski, L. Popielarski, E. Pozdeyev, H. Ren, P. Rodriguez, T. Russo, K. Saito, S. Stanley, A. Stolz, R. Webber, J. Wei, T. Xu, Y. Yamazaki, T. Yashimoto, T. Zhang, Q. Zhao, S. Zhao

