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Overview
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• Motivation for High-Luminosity LHC / fast diagnostics

• Electro-optic Beam Position Monitors
– Interferometric EOBPM concept
– Historic development

• Simulations of improved EO waveguide design

• Validation with recent beam tests:
– Transverse resolution at HiRadMat
– Bandwidth resolution studies at CLEAR

• Future developments

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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Beam instrumentation at the LHC

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• 1182 beam position monitors

• >4000 beam loss monitors

• Screens at injection and extraction

• Wire scanners, synchrotron radiation 

monitors

• Monitors for current, tune and chromaticity

• Bunch instability monitors

• Luminosity monitors

injection beam 1 injection beam 2

Collimation Collimation

Acceleration
& Instrumentation Extraction beam 1

Extraction beam 2

T. Lefevre
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Motivation: Crab bunch rotation at HL-LHC

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• To optimize the performance of the crab-cavities for the High Luminosity LHC, a new, fast 

diagnostic tool is required to monitor the bunch rotation:

2011 Hadron Collider Physics symposium (HCP-2011)

way, the load on Level-2 will be diminished and extra re-
sources will be available for more advanced selection al-
gorithms, which ultimately could improve the b-tagging,
lepton identification, etc.

Suggestions are also in place for combining trigger ob-
jects at Level-1 (topological triggers) and for implement-
ing full granularity readout of the calorimeter. The latter
will strongly improve the triggering capabilities for elec-
trons and photons at Level-1.

5 ATLAS Upgrade: Phase-II

The ATLAS Phase-II upgrade is scheduled for 2022 and
2023. During this time, LHC will be out of operation for
furnishing with new inner triplets and crab cavities. As a
result, an instantaneous luminosity of 5 ⇥ 1034 cm�2s�1

should be achieved. The goal is to accumulate 3000 fb�1

of data by ⇤ 2030.
ATLAS Phase-II preparations include a new Inner De-

tector and further trigger and calorimeter upgrades.

5.1 New Inner Detector

Running at nominalLpeak for the LHC , will bring, on av-
erage, ⇤ 28 primary interactions (pile-up events) per bunch
crossing, every 25 ns. The number of pile-up events at
5⇥1034 cm�2s�1 is therefore expected to be ⇤ 140. (Should
luminosity levelling not be fully e�ective or some other
scheme adopted, 7⇥1034 cm�2s�1 should at least be accom-
modated.) This will result in 5 to 10 times higher detec-
tor occupancies, which is beyond the TRT design param-
eters. Furthermore, by 2022, the Pixel and the SCT sub-
systems, would seriously degrade their performance due
to the radiation damage of their sensors and FE electron-
ics. Because of all these factors, ATLAS has decided to re-
place the entire Inner Detector with a new, all-silicon Inner
Tracker (ITk). The ITk must satisfy the following criteria
(w.r.t. ID): higher granularity, improved material budget,
increased radiation resistivity of the readout components.
At the moment, the ITk project is in an R&D phase. Dif-
ferent geometrical layouts are simulated and their perfor-
mance is studied in search for the optimal tracker archi-
tecture. A major constraint on the design is the available
space, defined by the volume taken by the ID in ATLAS.
This implies a maximum radius of ⇤ 1 m and the limiting
existing gaps for services.

The current baseline design of the ITk, depicted in Fig.
3, consists of 4 Pixel and 5 Si-strip layers in the barrel part.
The two endcap regions are each composed of 6 Pixel and
5 Si-strip double-sided disks, built of rings of modules. The
pixel modules are with identical pixels of size 50⇥250 µm,
whereas the Si-strip modules come in two types, with short
(24 mm) and long (96 mm) strips. As in the current SCT,
the Si-strip modules are designed to be of 2 pairs of silicon
microstrip sensors, glued back-to-back at an angle of 40
mrad to provide 2D space-points.

Intensive R&D studies are also in process to select the
most suitable pixel sensor technology out of Si-planar, 3D
and diamond, and to find the optimal layout of the Si-strip
modules [8].

Fig. 3. The baseline layout of the new Inner Detector, traversed by
simulated 23 pile-up events (left) and 230 pile-up events (right).

5.2 Calorimeter and trigger upgrades

The HL-LHC conditions will have a major impact on the
Calorimetry system. To ensure an adequate performance,
a replacement of the cold electronics inside the LAr Ha-
dronic endcap, as well as, a replacement of all on-detector
readout electronics for all calorimeters may need to be an-
ticipated. Also, the operation of the Forward Calorimeter
(FCal) could be compromised. To maintain the FCal func-
tioning at the HL-LHC, two possible solutions are consid-
ered [7]: first, complete replacement of the FCal, and sec-
ond, installation of a small warm calorimeter, Mini-FCal,
in front of the FCal. The Mini-Fcal would reduce the ion-
ization and heat loads of the FCal to acceptable levels.

The planned trigger upgrades for Phase-II, are con-
nected with implementing a Track Trigger at Level-1/Level-
2, applying full granularity of calorimeter at Level-1 and
improving the muon trigger coverage.

6 Conclusions

ATLAS collaboration has devised a detailed program to re-
flect the changes in the LHC conditions towards the High-
Luminosity LHC, characterized by high track multiplicity
and extreme fluences. At each of the 3 phases of the up-
grade program, actions will be undertaken to reassure the
stable and e⇥cient performance of the ATLAS detector.
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The planned trigger upgrades for Phase-II, are con-
nected with implementing a Track Trigger at Level-1/Level-
2, applying full granularity of calorimeter at Level-1 and
improving the muon trigger coverage.
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ATLAS collaboration has devised a detailed program to re-
flect the changes in the LHC conditions towards the High-
Luminosity LHC, characterized by high track multiplicity
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grade program, actions will be undertaken to reassure the
stable and e⇥cient performance of the ATLAS detector.

References

1. G. Aad, et al., The ATLAS Experiment at the CERN
Large Hadron Collider, J. Instr. 3 (2008) S08003.

2. L. Evans and P. Bryant, LHC Machine, J. Instr. 3 (2008)
S08001.

3. K. Jakobs, Physics at the LHC and sLHC, Nucl. Instr.
and Meth. A (2010), doi:10.1016/j.nima.2010.04.077

4. ATLAS collaboration, Insertable B-Layer, Technical
Design Report, CERN/LHCC-2010-013

5. M. Barbero et al., A new ATLAS pixel front-end IC for
upgraded LHC luminosity, Nucl. Instrum. Meth. A 604
(2009) 397.

6. M.S. Neubauer, A Fast Hardware Tracker for the
ATLAS Trigger System, ATL-DAQ-PROC-2011-023,
arXiv:1110.1910v1 [hep-ex]

7. J. Turner, Upgrade Plans for ATLAS Forward
Calorimetry for the HL-LHC, ATL-LARG-PROC-2011-
002

8. A. A�older, Silicon Strip Detectors for the ATLAS HL-
LHC Upgrade, ATL-UPGRADE-PROC-2011-005

9. B. Bittner, et al., Tracking and Level-1 triggering in
the forward region of the ATLAS Muon Spectrometer at
sLHC, ATL-UPGRADE-PROC-2011-008

LHC:  23 interactions HL-LHC:  140 interactions

4



5

Conventional Head-Tail monitor

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• CERN’s existing head-tail monitor is based on a stripline:
• Long enough that the signal and reflection do not mixPort 1

Port 2

à Very clean time domain signal of the transverse position along the bunch
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T. Levens et al

First detection of 
crabbed bunch in SPS
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Motivation: rapid, intra-bunch diagnostics

6Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

Ø replace capacitive pick-ups with fast electro-optic crystals
Ø replace electric cables by optical-fibre readout

The EO-BPM project grew out of idea to upgrade the Head Tail 
monitor to visualize and study beam instabilities as they occur.

Bandwidth of conventional diagnostics is typically limited to a 
few GHz by the pick-ups, hybrid, cables and acquisition system.
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Aims:
Bandwidth: Mode 6 detection with a time 
resolution lower than 100ps.
Higher bandwidth (>6GHz) required for the 
higher order modes.
Transverse resolution along 1ns proton bunch.

New technology: fast electro-optics pickups:
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Basic principle of Electro-Optic BPM

7Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• Electro-Optic BPM basic principle:

P A 
Grin lens 

EO 
crystal 

P A 
Grin lens 

EO 
crystal 

bunch 

beam pipe 

from laser 
to detector 2 

from laser 
to detector 1 (a)!

• Monitor the polarisation of light in birefringent 
crystals in response to the electric-field of a passing 
bunch

• Transverse position along passing bunch is measured
• A fibre coupled laser source and photodetector read-

out are housed away from the accelerator tunnel.
• As  polarised light passes through the crystal, the 

electric field of the bunch induces a change in 
polarisation state by the linear Pockels effect

High Frequency Electro-Optic Beam Position Monitors for Intra-
Bunch Diagnostics at the LHC, WEDLA02, Gibson, S., et al, 
IBIC2015, https://doi.org/10.18429/JACoW-IBIC2015-WEDLA02

https://doi.org/10.18429/JACoW-IBIC2015-WEDLA02
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Interferometric principle of Electro-Optic BPM

8Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• Electro-Optic BPM interferometric principle:

High Frequency Electro-Optic Beam Position Monitors for Intra-
Bunch Diagnostics at the LHC, WEDLA02, Gibson, S., et al, 
IBIC2015, https://doi.org/10.18429/JACoW-IBIC2015-WEDLA02

to detector from laser 

SM fibre 
splitter 

Grin lens 

EO 
crystal 

Grin lens 

EO 
crystal 

bunch 

beam pipe 

(b)!

• A fibre-coupled interferometer which uses phase 
modulation rather than a polariser/analyser

• Short, equal fibre lengths between the splitters 
improve tolerance to thermal instabilities and 
provide synchronization between pick-up

• Key advantage:
– The coherence of light is exploited to suppress the 

common mode signal.
– The difference signal is directly measured by the 

photodetector.
– Potential for enhanced positional resolution

https://doi.org/10.18429/JACoW-IBIC2015-WEDLA02
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Triple interferometer used in these studies

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• The propagating Coulomb field from a passing 
bunch induces a phase change of a laser beam, 
split between both crystals.

• “Common mode” interferometer IP-C: Optical 
modulation from opposite EO pickups is 
combined. Difference signal is produced when 
the beam is off-centre. This optical difference 
signal has never been tested until now.

• Two “side mode” interferometers IP-A, and IP-B: 
The optical modulation from each EO pickup is 
combined with a non-modulated arm, as in:

• Electro-Optic BPM triple interferometric principle:

Enhanced Bunch Monitoring by Interferometric Electro-Optic 
Methods, WEPAL073, Gibson, S. et al, IPAC May 2018.  
https://doi.org/10.18429/JACoW-IPAC2018-WEPAL073

9

https://doi.org/10.18429/JACoW-IPAC2018-WEPAL073
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Historic EO development at CERN SPS

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

Original SPS prototype installed in 2015 used bulky free-
space optics to sent light into the accelerator vacuum 
via a viewport. (Pickups still in use for AWAKE today!)

Arteche, A., RHUL PhD Thesis, June 2018, Studies of a prototype 
of an Electro-Optic Beam Position Monitor at the CERN Super 
Proton Synchrotron, https://cds.cern.ch/record/2653351?ln=en

10

https://cds.cern.ch/record/2653351?ln=en
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High-bandwidth EO-BPM development for HL-LHC

11
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MiniaturisationSPS Prototype HL-LHC compatible 
waveguide design

© RHUL

(*)

• Bulky side boxes replaced by more 
compact fibre-optic design and finally 
became totally fibre-coupled for the 
waveguide design.

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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Simulated upgraded pick-up performance

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

• The EO-BPM prototype tested at the SPS (2016-
2018) successfully delivered a weak proof-of-
concept signal, while operating at a radial 
position of 66.5mm from the bunch (<1kV/m).

• The optimisation work (2018-2020) focused on 
an improved pickup design capable of generating 
a highly magnified image field replica of the 
Coulomb field within an optical waveguide.

• Therefore, the result is a highly optimised opto-
mechanical design, fully fibred-coupled, capable 
to enhance the field up to ~200kV/m.  

12
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New design EO waveguide fabrication for beam tests

13Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

Waveguide fabrication in 
photonics industry

• Pickup development 
and bench tests at RHUL

Inspection in new nanofabrication 
clean-room facility at RHUL

Precision manufacture & 
waveguide integration

Beam test of waveguide bandwidth

• Beam tests of 
waveguides at CERN

Bench tests on RF 
coaxial line / laser labs

Beam test of waveguide signal

In collaboration with 
CERN BI, T. Lefevre et al
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New EO waveguide design shipped to CERN for beam tests

14

EO-BPMČerenkov BPM 

Optical inspection of 
waveguide in RHUL 

clean room

• EM simulations of pick-up performed in CST to optimise field strength at waveguide.
• Partnered with UK industry to produce waveguides suitable for our custom design:

Compact fibre-coupled 
waveguide pick-up

EO-BPM reception tested 
at CERN and laser-aligned 

with dielectric BPM on 
shared translation table

EO-BPM manufacture & VNA tests at RHUL

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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EO-BPM installation in HiRadMat facility
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Laser Source
Acquisition System

• SPS extraction line:
• 1.5ns proton 

bunches.
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EO-BPM installation in HiRadMat facility
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logo
area

Experimental setup at HiRadMat

9

780nm Laser Source at BA7: Acquisition System at TT61:

§ x3 8-bit LeCroy scope

§ x3 DXM12CF + 1GHz-60dB FEMTO
HSA-Y-1-60

§ x1 RXM10CF + 3GHz Filter

§ x2 Alphalas UPD-30-VSG-P

§ New Focus LB6800 Tunable Laser.
§ Toptica amplifier
§ Etalon for wavelength stabilisation

A. Arteche + EO-BPM team - EO-BPM - HL-LHC October 2021
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9

780nm Laser Source at BA7: Acquisition System at TT61:

§ x3 8-bit LeCroy scope

§ x3 DXM12CF + 1GHz-60dB FEMTO
HSA-Y-1-60

§ x1 RXM10CF + 3GHz Filter

§ x2 Alphalas UPD-30-VSG-P

§ New Focus LB6800 Tunable Laser.
§ Toptica amplifier
§ Etalon for wavelength stabilisation

A. Arteche + EO-BPM team - EO-BPM - HL-LHC October 2021

Acquisition system:

EO-BPM at HiRadMat extraction line780nm laser source in BA7

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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EO-BPM installation in HiRadMat facility

17Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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Transverse resolution studies at HiRadMat
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§ x3 8-bit LeCroy scope
§ x3 DXM12CF + 1GHz-60dB FEMTO HSA-Y-1-60
§ x1 RXM10CF + 3GHz Filter
§ x2 Alphalas UPD-30-VSG-P
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Successful first beam test at HiRadMat

19

§ Waveguide design enabled first single-shot measurements of 
each passing bunch.

§ EO-BPM also sensitive to low intensity bunches.
§ Laser scanning technique developed to automate operation of 

electro-optic interferometer.
§ Translation of EO-BPM across the HiRadMat extraction line:

first bunch by bunch position measurements:
§ Campaign extended to 3 run periods.

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

anti-phase

in-phase

Typical single-shot signals

Measured at relatively  low proton bunch charge: 7.7x1010

logo
area 12

In-Phase@1GHz

Anti-phase@3GHz

§ Single-shot measurement observations from the preamplified
detector in the order of 50 mV.

§ Bandwidth: from 210MHz to 1GHz and 3GHz (4!~1.5ns).
§ No resonances observed.
§ Dx+FEMTO saturates when reaches ~2V outcome.

Beam Measurements at HiRadMat

A. Arteche + EO-BPM team - EO-BPM - HL-LHC October 2021

in-phase

anti-phase

-10mm

-

-
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Transverse displacement, single-shots
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Inphase@1GHzInphase@1GHzInphase@1GHz

Antiphase@3GHz Antiphase@3GHz Antiphase@3GHz

Inphase@1GHz

Antiphase@3GHz Antiphase@3GHz Antiphase@3GHz

Inphase@1GHz Inphase@1GHz

Measured at close to nominal proton bunch charge: 1.05x1011

-9.5mm -6.5mm +1.5mm

+10.0mm +12.0mm +20.0mm
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Transverse single-shot bunch resolution
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𝑚 = −3.3 mV/mm𝑚 = +171 mV/mm

C+ LPF IN OUT

60dB DXM12CF
DC

C- 
RXM10CF

DC

VLF-3000
LPF

• Dx + FEMTO saturates for large signals, < -2V.
• Opposite sign gradients for in-phase and anti-phase, as expected
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Bandwidth tests at CLEAR facility
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• 5ps electron bunches
• Interferometric Common Mode measured at a single C+ channel using a 33GHz optical probe directly attached to a 

Keysight UXR series 33GHz scope.
• This scope allowed simultaneous detection of the DC working point baseline and the AC optical modulation on top.
• EOBPM installed in the in-air section of the beamline on a translation stage to perform transverse beam measurements.

(*) https://www.keysight.com/zz/en/products/oscilloscopes/infiniium-real-time-
oscilloscopes/infiniium-uxr-series-oscilloscopes.html
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July 2022 EO-BPM beam test at CLEAR:
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§ EO-BPM installed in the CLEAR beamline to check 
sensitivity and time resolution to short electron bunches.

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

§ Initial measurements of a train of 5 
electron bunch pulses spaced by 
666ps (1.5GHz) were observable at 
the photodetector, where the pulse 
width was limited by the bandwidth of 
the photodetection system.

e-

§ With an upgraded detector, the pulse 
width indicates the time resolution of 
EO pick-up is well within the < 50 ps
specification required for the HL-LHC 
measurement of 1ns bunches.

single shot, single pulse

single shot, pulse train
Preliminary analysis:

666ps

At nominal CLEAR  e- bunch charge
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EO-BPM future HL-LHC demonstrator in SPS
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§ HiRadMat EO-pick-up design incorporated into an 
in-vacuum design for the next phase of project.

§ Excellent recent progress on CERN engineering 
drawings and vacuum brazing.

§ EO-BPM demonstrator now being built for 
installation in SPS and operation in Run 3.

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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Summary
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• First successful electro-optic transverse displacement measurements of single-shot bunches, 
using for first time the novel “common mode” optical difference detection.

• Signal strength has been significantly enhanced by an in-fibre, EO waveguide design, which 
shows promise for further improvements in the transverse resolution. 

• The new electro-optical button, incorporating the waveguide, shows a time response <50ps, 
which is at the expected limit of the design and acquisition system.

• Further improvements in the bandwidth of the detection system are anticipated for the future 
prototype in SPS.

• A fully vacuum compatible design is in production for beam tests at the SPS.
Thank you! 

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22
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Thanks for your attention…and GO EO!

Stephen Gibson et al – EO-BPM development for HL-LHC – IBIC22

With thanks to Pascal Simon and the HiRadMat team

This project has received funding from the European Union’s Horizon 2020 

Research and Innovation programme under GA No 101004730.
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