JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOP33: Beam Current Measurements at the Nano-Ampere Level Using a Current Transformer

@inproceedings{xiao:ibic2022-mop33,
  author       = {M. Xiao and S. Brandenburg and T. Delaviere and L. Dupuy and M.J. Goethem and F. Stulle},
  title        = {{Beam Current Measurements at the Nano-Ampere Level Using a Current Transformer}},
& booktitle    = {Proc. IBIC'22},
  booktitle    = {Proc. 11th Int. Beam Instrum. Conf. (IBIC'22)},
  pages        = {121--124},
  eid          = {MOP33},
  language     = {english},
  keywords     = {experiment, proton, electron, electronics, controls},
  venue        = {Kraków, Poland},
  series       = {International Beam Instrumentation Conference},
  number       = {11},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {12},
  year         = {2022},
  issn         = {2673-5350},
  isbn         = {978-3-95450-241-7},
  doi          = {10.18429/JACoW-IBIC2022-MOP33},
  url          = {https://jacow.org/ibic2022/papers/mop33.pdf},
  abstract     = {{In conventional proton therapy (PT) typical beam currents are of the order of 1 nA. At these currents dose monitoring is reliably achieved with an ionization chamber. However, at the very high dose rates used in FLASH irradiations (employing beam currents >100 nA) ionization chambers will exhibit large intensity dependent recombination effects and cannot be used. A possible solution is a current transformer. Here we report on the performance of the LC-CWCT (Bergoz Instrumentation, France) which has been developed to push noise floor of such non-destructive current measurement systems into the nano-ampere range. We present first beam current measurements at the PARTREC cyclotron (Netherlands). Beam currents measured by the LC-CWCT and a Faraday Cup were shown to linearly correlate up to the maximum intensity of 400 nA used in the measurements. For pulsed beams, charge measured by the LC-CWCT linearly correlated with pulse length over the measurement range from 50 to 1000 µs. Measurement noise as low as 2.8 nA was achieved. The results confirm that the LC-CWCT has the potential to be applied in FLASH PT for accurate determination of beam current and macro pulse charge.}},
}