
BEAM PROFILE MONITORING AND DISTRIBUTED ANALYSIS
USING THE RabbitMQ MESSAGE BROKER

D. Proft∗, K. Desch, D. Elsner, F. Frommberger, S. Kronenberg, A. Spreitzer, M. Switka
Physikalisches Institut, University of Bonn, Germany

Abstract
The ELSA facility utilizes several digital cameras for

beam profile measurements on luminous screens and syn-
chrotron radiation monitors. Currently a multitude of de-
vices with analog signal output are being replaced in favor
of digital outputs, preferably with data transfer via Ethernet.
The increased network traffic for streaming, analyzing, and
distribution of processed data to control system and machine
operators is managed through a supplementary camera net-
work in which distributed computing is performed by the
RabbitMQ message broker. This allows performant and
platform-independent image acquisition from multiple cam-
eras, real time profile analysis, and supports programming
interfaces for C++ and Python. The setup and performance
of the implementation are presented.

INTRODUCTION
As in most facilities the beam images at ELSA [1] are

obtained through several different observation techniques
via synchrotron radiation or luminous screens based on fluo-
rescence, intensified phosphorescence or transition radiation.
Thereby numerous camera systems from various manufac-
turers are in use, whose data acquisiation and transfer tech-
niques are based on different interfaces. In practice, this
makes it difficult to grant reliable and permanent access to
all imaging systems for operators or control system algo-
rithms, especially when hardware from different decades
with individual digitizers, software, and software platforms
are required. In the following we present an approach of
unifying the various image streams to provide more reliable
and uniformly accessible beam image data for beam obser-
vation, profile analysis, beam parameter measurements, and
hence, machine optimization.

IMAGING HARDWARE
Cameras With Analog Output

The prevalent form of imaging has been based on cameras
with analog output signals (e.g. composite video), which
served its purpose for basic adjustment procedures, such as
beam alignment. However, the analog signals are usually
transmitted over long coaxial lines to distant video multi-
plexers and digitizers and are prone to interference with a
multitude of disturbing signals from the accelerator environ-
ment. In those setups the requirements for quantitative beam
profile measurements with adequate precision are rarely met
due to visual defects from transmission or imperfect expo-
sure settings, as shown in Fig. 1 a). In addition, multiple
∗ proft@physik.uni-bonn.de

digitizer cards installed at different work stations suffer from
aging and incompatibility with modern operating systems.
Some images are not digitized at all and broadcasted to a
screen in the control room, lacking the advanced capability
for processing by computer vision algorithms.

Cameras with Digital Output
The usage of cameras with digital signal output overcomes

the above mentioned issues and the GigE Vision commu-
nication interface allows for cameras to be conveniently
connected through a network of Ethernet switches allowing
bi-directional communication between camera and accelera-
tor control system (e.g. to set shutter time or frame rate). In
this configuration power can be provided over the Ethernet
cable itself (PoE), implying convenient hardware connectiv-
ity up to 100 m away from a network switch (compare with
Fig. 1 b)). This is especially useful for temporarily installed
monitoring cameras, which only require an Ethernet cable
(e.g. on a reel) to function. As explicated below, cameras
with GenICam interface allow good software connectivity.

Some camera systems often operate through enclosed,
proprietary software environments running on dedicated
computers, such as a streak camera (see Fig. 1 c). Usually,
data transfer and device control inferfaces via TCP/IP pro-
tocol are availble and the computers can be used as image
servers, whose data stream is manageable through prevalent
programming environments such as Python or C++. This
way any computer operating digitizer cards (framegrabber)
can be integrated into the camera network.

Figure 1: Examplary hardware and corresponding beam im-
ages: a) chromox screen monitor with saturated image and
visual defects from analog signal, b) synchrotron radiation
monitor equipped with Ethernet camera, c) streak camera
as bunch train monitor with analyzed image (tune measure-
ment).

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP38

MOP38C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

140 09 Data Acquisition and Processing Platforms



Camera Network
To protect the accelerator control system and its process

network from data traffic overload when GigE Vision cam-
eras and other devices are connected, a separated network
infrastrucuture of multiple gigabit Ethernet switches with
power over Ethernet (PoE) capability are installed through-
out the facility, where long distances are bridged via switches
with fibre transmission capability. The accelerator process
network is connected to the camera network through a gate-
way computer whose outgoing data traffic contains only
selected information, such as size- and rate-reduced image
streams or numeric fit results.

Magnification Calibration
The individual optical system of a beam monitor deter-

mines the image magnification and hence, the calibration
ratio of pixel to object size, which can be as simple as a
single factor. In the case of luminous screens, which are typ-
ically mounted under an observation angle of 45∘, in most
cases the warped image yields an image magnification as
function of one transverse position (compare with Fig. 1
a)). In addition, digitizers may change the resolution of the
original broadcast for lines or columns separately.

FGrabbit FRAMEWORK
FGrabbit is a distributed image acquisition and analysis

framework for beam profile monitoring developed for ELSA.
It supersedes the multitude of individually developed solu-
tions — internally called Framegrabber — for the different
monitoring stations spread around the accelerator facility.
The development goal was to build one common software
environment for all monitoring stations where only the in-
terface to the corresponding hardware (camera) is device
dependent. Emphasis was laid on a distributed system for
network and CPU load balancing.

Message Broker & Concept
The fundamental building block is the RabbitMQ1 mes-

sage broker software, that is utilized to distribute messages
to a number of software tools for further processing. These
messages contain either raw or calibrated image data with
sizes of up to 10 MiB per frame, or analysis results in the
form of e.g. parameters of typically two-dimensional pro-
files.

Several instances of RabbitMQ running on different ma-
chines (called nodes) form a cluster and allow message dis-
tribution between each other. This way, transparent access to
camera data is possible from every node. Furthermore, each
node takes care of one or more cameras and usually the com-
plete processing chain involved: processing of raw images
to calibrated images, preparation of fits to user-selectable
profiles and execution of the corresponding fit algorithms.
Limiting the processing chain to only one machine reduces
the network traffic drastically, as raw image data remains

1 Open source message broker: https://www.rabbitmq.com

on the same machine. Nevertheless, multiple machines can
take part, if e.g. more processing power is required.

The processing scheme for each node is shown in Fig. 2.
The different steps are explained in detail in the following.

camera camera
driver

raw
image

calibrated
image

fit
dispatcher

worker 1

worker 2

...

fit
results

GUIfit writer image writer

analog, Ethernet, etc.
RabbitMQ

Figure 2: Schematic sketch of processing chain usually tak-
ing place on a single node (orange). The chain consists of
image acquisition (red), provisioning of raw and calibrated
images (green) and fitting (blue). User applications typically
access the data from any node (magenta).

Image Acquisition
For the wide variety of cameras and image acquisition sys-

tems individual camera drivers were implemented. Most of
the existing analog video capture cards from many different
vendors are incompatible to modern PC hardware. The pre-
existing image acquisition software was extended to stream
the raw images via a compressed TCP/IP connection to a
server application acting as camera driver for these devices.
video4linux (e.g. USB and HDMI capture devices) and GigE
Vision devices are natively included in the drivers — the
latter also via the harvesters Python library (see below).

Image Calibration
A distinct calibration needs to be carried out for each of

the stations. Hence, a regular checkerboard pattern (with up
to 15 × 15 fields) with edge length of up to typically 5 mm is
temporarily installed as screen and captured by the imaging
system including the specific camera. To account for the
tilt angle of 45∘ that the screen is mounted in relation to
the camera (see Fig. 3), one transverse dimension of the
calibration pattern is stretched by a factor of √2. For the
calibration procedure a performant, reliable computer-vision
based approach is used, where a sequence of raw camera
images is captured, the corresponding positions of the inner
edges of the checkerboard pattern are derived, averaged and

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP38

09 Data Acquisition and Processing Platforms

MOP38

141

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 3: Left two images: Checkerboard pattern used for
calibration as raw image from camera (left) and resulting
calibrated image (right). Right two images: Test pattern with
5 × 4 Gaussian profiles as raw image (left) and calibrated
image (right)

then mapped to the respective real world coordinates. With
openCV’s 3D reconstruction and camera calibration capabil-
ities [2] the corresponding 3x3 homography transformation
matrix 𝑀h and translation matrix 𝑇 is derived and stored
as a calibration data set within FGrabbit’s configuration
subsystem. Image coordinates ⃗𝑥′ can now be projected to
real world coordinates ⃗𝑥″ using

⃗𝑥″ = 𝑇 ⋅ 𝑀h ⋅ ⃗𝑥′ . (1)

After applying the calibration, the raw camera images are au-
tomatically de-warped (interpolated) into calibrated images
and published to RabbitMQ. All further image processing
and analysis is carried out using the de-warped images (see
Fig. 2).

With a test setup and a very rough calibration, by utiliz-
ing a paper printout of a checkerboard, measurements of
the beam profile position and beam sizes with a relative de-
viance below 2% could be achieved. Even better results are
expected as soon as the checkerboard pattern is replaced by
a thin laser engraved PVC plate with the proper dimensions
of the respective screen.

Processing / Fitting
From the de-warped image subimages can be cropped out

according to the position and dimensions of areas of interest
(AOIs), which can be easily defined via the graphical user
interface (GUI). A fit job is created from the cut out segment
and complemented by metadata (e.g. timestamps, see below)
describing the original image as well as the function to be
fitted to the data. The fit job is then dispatched to a fit queue
from which several fit workers consume and eventually fit
functions to the image data. The fit results (typically pa-
rameters 𝜇𝑖, 𝜎𝑖, rotation angle, intensity and background
level of a 2D Gaussian profile) are finally published back to
a RabbitMQ exchange2.

A GUI displays the (calibrated) images, AOIs and fit re-
sults to the user, or dedicated tools can be used to e.g. write
fit results to a file or transfer the results to to the accelerators
control system.

2 In the AMQ protocol messages are sent to exchanges and then routed to
different queues for message delivery.

Configuration Subsystem
All configuration parameters of the cameras (e.g. frame

rate, exposure time, external trigger configuration), the cal-
ibration data and the fit properties (e.g. AOI position, fit
function) are stored in a central key-value database that is
accessible via RabbitMQ. With appropriate callback mecha-
nisms being implemented in the C++ and Python library,
parameter updates are broadcasted to the client applications.
Remote procedure calls (RPC) allow for communication
between the different applications as well as execution of
common tasks (e.g. setup of new cameras, update of cali-
bration data sets).

Deployment
All applications and libraries are deployed using a single

Docker [3] image. With that approach, new RabbitMQ nodes
can be joined into the cluster with ease and run isolated from
the operating system. The nodes can either run the whole
FGrabbit tool chain including camera drivers, fit dispatcher
and fit workers or just run fit workers to increase computing
power.

Python Interface
In addition to the framework’s full-featured C++ inter-

face, a Python interface allows for a quick and easy ac-
cess to FGrabbit in projects by researchers and students.
The Python interface is based on the RabbitMQ client li-
brary Pika3. Divided into different types of exchanges, the
FGrabbit-features are handled by exchange-specific classes
with a specialized set of functions. A brief overview of the
functional scope is given in the following:

• The image-data-class includes functions for publishing
images - both raw and calibrated. Each image contains
a header with camera metadata, a timestamp and a
serial number for identification and later assignment
in the event of backlogs during time consuming tasks
such as fit jobs. Likewise it is possible to subscribe to
any camera exchange. One can choose to receive a raw
stream or the already calibrated image.

• The fit-data-class allows users to access live fit data
for a selected camera and AOI. Up to now fit jobs are
handled by the reliable C++ fit library presented below.
However, the architecture of the FGrabbit-framework
enables Python scripts to handle fit jobs and publish
fit results. This possibility can find use in application-
dependent unique image analysis without the need to
extend the C++-library.

• The config-data-class interfaces with the configuration
subsystem described above. One essential function of
this class is to request a complete key-value set regard-
ing a specified topic (e.g. general, camera, calibration
data, fit properties). Along with a subscription feature
that allows for callback mechanisms upon configuration

3 Open source AMQP 0-9-1 library: https://github.com/pika/pika

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP38

MOP38C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

142 09 Data Acquisition and Processing Platforms



updates, an object can be configured initially and kept
up to date. Likewise, an update function implements a
way to control devices and set properties for AOIs, fits,
etc. Within the config-data-class, additional RPCs can
be executed for common tasks (e.g. adding cameras).

• The log-data-class attaches to the global programming
language independent logging exchange. Besides the
possibility to send log messages, there is also a sub-
scription method to receive all or filtered log messages.
This is used e.g. for a log viewer realized with the
cutelog [4] GUI to investigate the overall health on
the whole system.

With the briefly described features above and following the
naming scheme in Fig. 2, Python scripts can embody cam-
era drivers, fit writers, image writers and fit workers. In
particular, the ability to have Python camera drivers sim-
plifies image acquisition thanks to freely available Python
libraries like the one described in the following section.

GenICam-Harvesters Library Bi-directional commu-
nication with e.g. GigE Vision devices can be established via
the generic programming interface for computer vision cam-
eras GenICam [5]. The Harvesters4 Python library aims to
simplify the image acquisition process via this interface. It al-
lows both for easy acquisition through GenTL producers (the
transport layer interface, here hidden for the consumer) and
uncomplicated feature node manipulation to remote control
devices. During the development of FGrabbit, Harvesters
has proven to ba a reliable and simplified alternative to im-
plementations of the GenICam interface by closed source
software development kits (SDKs) from various manufac-
tures.

IMPROVEMENT OF FIT PERFORMANCE
In addition to the optimization of the workflow using the

new FGrabbit, the performance and accuracy of the fit al-
gorithm was also improved. In the scope of [6] a C++ library
for the analysis of beam images at various camera observed
beam monitoring stations was developed. The library is
based on the Gnu Scientific Library [7] and Ceres [8]. This
library implements two-dimensional fits for several func-
tions suited for profile analysis. Special emphasis was put
on the analysis of saturated and rotated profiles. Hence
two fit functions were established for this cases. The first
implements a Gaussian profile with a saturation compensa-
tion (by implementing a flattop into the function and thus
neglecting the saturated area). The second implements a
rotation angle, which clearly increases the computing effort,
but also increases the fit accuracy for slightly rotated profiles
noticeably. The performance of the new fit functions and
the reached fit accuracy was extensively examined using a
generator, which emulates typical images with known profile

4 Developed by the GenICam collaboration: https://github.com/
genicam/harvesters

parameters. 5000 of these images were fitted by the new
algorithm and the deviation between simulated and fitted
profile parameters for all images were analyzed. The results
of this statistical analysis are shown in Table 1. The relative
deviation of the widths of the beam spot is in all cases in the
order of a tenth of a percent or lower, the relative deviation
of the intensity is around 1%. With the usage of the rotated
Gaussian fit function relative deviations in the order of these
displayed in Table 1 were reached also for rotated profiles.

Table 1: Relative Deviation of the Fit Results from the Sim-
ulated Values for 5000 Analyzed Images and The Results
Presented as: 𝜇 ± 𝜎, Referring to Mean and Standard Devi-
ation of a Laplace Distribution

Gaussian Gaussian + flattop
not-sat. sat. not-sat. sat.

Δ𝐼0/% 0.8 ± 0.4 −13.3 0.8 ± 0.4 1.0 ± 0.4
Δ𝜎𝑣/% 0.1 ± 0.5 5.9 0.0 ± 0.4 0.1 ± 0.8
Δ𝜎ℎ/% 0.1 ± 0.5 7.1 0.0 ± 0.4 0.1 ± 0.3

CONCLUSION
The FGrabbit framework, which is being developed at

ELSA, provides a solution for processing a multitude of
varying camera signals for beam profile analysis and other
tasks. An improved library for two-dimensional fits and auto-
mated image calibration is included. The image acquisition
and data processing work load is distributed over arbitrar-
ily many worker computers in a separated camera network
and managed by the RabbitMQ message-broker. The uni-
fied data can be easily accessed via interfaces in C++ and
Python, as well as through the accelerator control system.

REFERENCES
[1] W. Hillert et al., “Beam and spin dynamics in the fast ramping

storage ring ELSA”, EPJ Web Conf., vol. 134, p. 05002, Jan.
2017. doi:10.1051/epjconf/201713405002

[2] G. Bradski, “The OpenCV Library”, Dr. Dobb’s Journal of
Software Tools, 2000.

[3] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment”, Linux J., vol. 2014, no. 239,
2014.

[4] A. Bus, “Cutelog – GUI for logging”, 2019,
https://github.com/busimus/cutelog

[5] European Machine Vision Association. “GenICam Standard”,
https://www.emva.org/standards-technology/
genicam/

[6] S. Kronenberg, “Entwicklung einer Softwarebibliothek zur au-
tomatisierten Analyse von Strahlabbildern an ELSA”, Bachelor
thesis, University of Bonn, Bonn, Germany, 2020.

[7] M. Galassi et al., GNU Scientific Library Reference Manual
(Release 2.7), 2021, http://www.gnu.org/software/gsl

[8] S. Agarwal, K. Mierle & Ceres Solver Team, “Ceres Solver”,
2022,
https://github.com/ceres-solver/ceres-solver

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP38

09 Data Acquisition and Processing Platforms

MOP38

143

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


