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Abstract

The main goal of National Synchrotron Radiation Centre
(NSRC) Solaris is to provide scientific community with high
quality synchrotron light. To achieve this, it is necessary to
constantly monitor many subsystems responsible for beam
stability and to analyze data about the beam itself from vari-
ous diagnostic beamlines. In this work a deep neural network
for transverse beam profile classification is proposed. Main
task of the system is to automatically assess and classify
transverse beam profiles based solely on the evaluation of
the beam image from the Pinhole diagnostic beamline at
Solaris. At the present stage, a binary assignment of each
profile is performed: stable beam operation or unstable beam
operation / no beam. Base model architecture consists of a
pre-trained convolutional neural network (CNN) followed
by a densely-connected classifier and the system reaches
accuracy at the level of 94.10%. The model and the results
obtained so far are discussed, along with plans for future
development.

INTRODUCTION

Solaris is a third generation light source (shown in
Fig. 1) operating at the Jagiellonian University in Krakéw,
Poland [1]. This advanced and complex scientific infras-
tructure offers new highly innovative research opportunities
for areas including physics, medicine and nanotechnology.
Currently at Solaris five experimental beamlines offering
various techniques, e.g.: photoemission electron microscopy,
X-ray absorption spectroscopy, ultra angle-resolved photoe-
mission spectroscopy or multi-scale X-ray and multimodal
imaging, are available to the scientific community whereas
another three are already at advanced level of construction
and commissioning. Moreover, Solaris is also a National
Cryo-EM Centre, with two latest generation cryo-electron
microscopes enabling life science researchers to unravel life
at the molecular level [2].

Synchrotron control system is large, distributed and con-
trols hundreds of devices and reads measurement and diag-
nostic data out of thousands. Moreover, due to a complexity
of physical phenomena that occurs during the operation i.e.
electron injection, beam tuning and beam decay, it is often
difficult to quickly determine the reason of beam instabil-
ities or its lost. Manual inspection performed even by an
experienced operator is not able to extract full information
from hundreds of diagnostic signals, which carry a lot of
important information about the state of the machine. The
purpose of this work is to present a system that could help
operators in detecting potential threats and, in the future,
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Figure 1: NSRC Solaris [3].

to serve as a tool for predicting anomalies, beam loss or
equipment failure.

The use of artificial intelligence (AI) techniques, including
machine learning and neural networks, for signal analysis,
prediction or anomaly detection has a long history. As the
accelerators serve as an interesting research area also here
we observe a huge interest in the anomaly detection area
where new methods are developed, validated and deployed
to solve existing problems regarding the operation of syn-
chrotron radiation systems. Classic neural networks or ma-
chine learning frameworks take advantage of archived data
of beam position in the storage ring in order to determine
the appropriate orbit correction to minimize the proposed
cost function [4,5]. The problem of anomaly detection
and failure prediction in the accelerator control systems has
also been discussed during the ICALEPCS or IBIC confer-
ences and different approaches has been proposed [6, 7].
Finally, various applications of artificial intelligence based
systems has been identified in the fields like beam stabiliza-
tion, autonomous operation, optimisation and performance
improvements [8—10]. Since there is such a high demand on
a precise and reliable Al-based systems I propose a deep neu-
ral network (DNN) for transverse beam profile classification
as a support tool for operators.

BEAM PROFILE
CLASSIFICATION SYSTEM

In this section a transverse beam profile classification
model based on deep, convolutional neural network is pre-
sented. Main idea behind it is to use Pinhole diagnostic
beamline beam profiles and employ transfer learning meth-
ods to build suited classifier on top of the pre-trained archi-
tecture.
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Deep Neural Networks

Deep neural networks have become very popular, resulting
in their appearance in many applications and models. It is an
attempt to map to some extent the activity of the human brain.
Neural networks quickly proved to be effective in solving
problems that typical programs or algorithms do not cope
with or become too complicated to use. An important feature
of the networks is that the they are effective even if the creator
of the network himself does not quite know the algorithm
that could solve the problem. Only knowledge of the problem
and the appropriate selection of parameters and architecture
are required. This greatly expands the possibilities of using
such models for practical cases. The neural networks after
proper training are able to learn a certain process and detect a
moment of anomaly or deviation from the norm. The key to
success in this case is having sufficiently large retrospective
data that can be used to show examples of relationships and
correlations.

Convolutional neural networks, which are subset of deep
neural networks, proved to be successful in classification
and recognition tasks. The convolution operation in terms of
image processing is a filtering process. A filter (convolution
mask) is moved through the image and the sum of products
of the corresponding values is calculated. Parameters are
usually the window (mask) size and the number of pixels
by which the mask moves in each step. The goal of the first
convolution layers is to reveal general image features such as
edges and simplest shapes. Those deeper ones can already
indicate whole shapes and high-level features.

Transfer Learning

Deep neural network models require not only computa-
tional resources but also huge amount of training, validation
and testing data in order to tune all parameters well which is
the main limitation in building deep networks from scratch
Moreover, sometimes an experiment cannot be repeated or
data gathering can be dangerous or very expensive so of-
ten scientists end up with a limited amount of data. While
observing the ability of DNN to generalize on big datasets
one of the possibilities is to use transfer learning. Its main
idea is to share base model of a neural network, build only
classifier on top of it and by this architecture solve similar
issue [11].

The decision of choosing the transfer-learning strategy has
been done based on the amount of data in the dataset. I have
also decided to use the soft fine-tuning strategy. Main idea is
to unlock some of the layers of base model and train both new
classifier on top and those few layers (original weights are
used as a starting point). This method can improve models’
performance by tuning architecture to its new task. Taking
into account that the pre-trained model has been well trained
on a huge database I kept a small learning rate (only for the
classifier) to ensure that I don’t distort the CNN weights too
much.

TUP38
324

IBIC2022, Krakéw, Poland
ISSN: 2673-5350

JACoW Publishing
doi:10.18429/JACoW-IBIC2022-TUP38

Proposed Beam Profile Classification Solution

The main purpose of the proposed solution is automati-
cally assess and classify transverse beam profiles based only
on the evaluation of the beam image from the Pinhole di-
agnostic beamline. Due to the complexity of the operation,
Solaris has a distributed control system that gathers diag-
nostic signals from thousands of devices, processes them
and finally controls many setpoints and moving elements.
Measurement data from most devices are read and archived
using dedicated archiving system. Different kind of signals
(scalars, 1D or 2D) are stored in the database and are easily
accessible for further analysis and comparison.

For the emittance and beam size monitoring and mea-
surements Pinhole diagnostic beamline has been setup. It is
based on X-ray radiation extracted from the dipole through
a diamond window, a pinhole cross down to the scintillator
crystal where is converted to the visible light. The opti-
cal light from scintillator is imaged by a CCD camera [12].
Overview of the Pinhole beamline has been shown in Fig. 2.
The Pinhole beamline allows for online monitoring of the
transverse beam profile and the emittance thus beam stability
during electron beam decay. Example of data extracted from
this diagnostic beamlie at Solaris has been shown in Fig. 3.
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Figure 2: The Pinhole diagnostic beamline [12].

(a) High beam quality, horizontal and vertical emmitances are
9.975 nm and 0.071 nm, respectively.

(b) Low beam quality, horizontal and vertical emmitances are
15.047 nm and 0.093 nm, respectively.

Figure 3: Example images taken by the Pinhole diagnostic
beamline in Solaris Radiation Centre.

Database for this research has been created from scratch,
gathering raw transverse beam profiles from the CCD camera
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as well as both vertical and horizontal emmitances. Follow-
ing with the Solaris archiving standards and requirements,
data were collected with a period of 3 s. Presented architec-
ture has been trained using nearly 137000 Pinhole images
and the corresponding emittance values. As the emittance
is an important property of the beam, directly determining
its quality and stability it was used to label the dataset by
thresholding both horizontal and vertical emittances. Good
quality beam threshold values were determined empirically
and are: [5 nm, 11 nm] and [0.05 nm, 0.08 nm] for horizon-
tal and vertical emittances, respectively. Finally, image is
considered as anomaly if the emittance values go beyond
the specified range in both planes simultaneously.

Architecture for Pinhole diagnostic images evaluation has
been created in soft fine-tuning strategy using InceptionV3
as a base model. To achieve better performance, apart from
the classifier, last three layers of the base network have been
unfrozen and subjected to training. The system operation
diagram has been presented in Fig. 4.

Flow-chart of the proposed anomaly detection system
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Figure 4: The streamline of proposed neural network based
framework.

In the proposed system, the classifier has been created
specifically for the problem of recognizing two classes: cor-
rect and not correct beam shape. It consists of three layers.
The first is the Fully-Connected layer with ReLU activation
function, the next is the Dropout layer and the classifier fin-
ishes the Fully-Connected output layer with two outputs and
the Softmax activation function. At each of these outputs,
the network calculates the probability that the input image
is an anomaly or is correct. Hyperparametes setting for the
proposed system has been shown in Table 1.

Table 1: Overview of the Hyperparameters Settings for the
Proposed CNN Model

Parameters InceptionV3
Topological depth 189
Input shape 134, 390, 3
Dropout rate 0.2
Epochs 50
Loss function Categorical cross-entropy
Metrics Accuracy
Fine-tuning Last three conv-layers
Optimizer Adam

Tests and Results

At the stage of preparation and initial data processing,
two datasets have been obtained: training and validation.
They come from completely different periods of time, which
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ensures the reliability of the results obtained in tests. Accu-
racy of the proposed system is 95.20% and 94.10% for those
datasets respectively, which shows that the network classi-
fies images very well. Moreover, it can also be concluded
that the system was not overfitted. For further evaluation of
the model, confusion matrix was created (see Table 2). The
system should have as many classifications as possible on
the diagonal of the confusion matrix (correct classification),
and when there is a mistake it should be FP (false positive)
type. It means that it is a false alarm which can be easily
verified by duty operator.

Table 2: Confusion Matrix

Actual class Predicted class

positive negative
positive 62037 3559
negative 6574 100592

CONCLUSION AND FUTURE WORK

The paper presents the design of deep neural network
based system for transverse beam profile classification. It
was inspired by earlier research conducted using various
machine learning and deep learning techniques in acceler-
ators. It has been proved that using deep neural network
based systems can achieve high accuracy in electron beam
quality assessment. What is worth emphasizing is a fact
that it can be done based directly from raw Pinhole image
without having to calculate any physical beam parameters.
Such a system could certainly serve as a support for the Op-
erators giving valuable information on the current machine
performance.

The system has great development potential. The next
stage will be real time Pinhole image capturing and their

classification. Further modifications may include extending -

the number of classes to find more meaningful and poten-
tially useful beam states for the Operators and to include the
Solaris’ state machine.
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