©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

11th Int. Beam Instrum. Conf.
ISBN: 978-3-95450-241-7

IBIC2022, Krakéw, Poland
ISSN: 2673-5350

JACoW Publishing
doi:10.18429/JACoW-IBIC2022-WEP41

ENeXAr: AN EPICS-BASED TOOL FOR
USER-CONTROLLED DATA ARCHIVING

J. F. Esteban Miiller*, European Spallation Source ERIC, Lund, Sweden

Abstract

ENeXAr is a data archival tool for EPICS-based systems.
It is intended as a complement for traditional data archiving
solutions, to cover use cases for which they are usually not
designed: mainly for limited-duration high-data rates from a
subset of signals. The service is particularly useful for activ-
ities related to machine commissioning, beam studies, and
system integration testing. Data acquisition is controlled via
PV Access RPC commands and the data is stored in standard
HDF5-based NeXus files. The RPC commands allow users
to define the acquisition parameters, the data structure, and
the metadata. The usage of EPICS RPC commands means
that the users are not required to install additional software.
Also, acquisitions can be automatized directly from EPICS
IOCs.

INTRODUCTION

Most accelerator facilities rely on data archiving services
that continuously acquire and store data from all the signals
that need to be monitored.

At ESS, our control system is based on EPICS [1] and we
use the Archiver Appliance [2] for archiving data related to
the machine operation.

There are use cases, however, when traditional data
archivers are not optimal. For example, during system test-
ing, machine commissioning activities, beam studies, or
when troubleshooting issues with a particular device, users
may require to acquire different signals than those regularly
stored in the archiver. Often, these sets of signals contain
long arrays (waveform records), which would be very costly
to continuously archive for all systems, in terms of required
network bandwidth and storage. However, acquiring only a
subset of them for a limited period of time poses no issues.

Traditionally this is done using scripts, in which case
the user needs to take care of acquiring the data using the
EPICS libraries and storing the data. This results in different
systems using a variety of file formats that make data analysis
more complex.

The purpose of ENeXAr is to facilitate data acquisition
and storage, by defining a set of commands that allow users
to run an automatic data collection that saves the data in cen-
tral storage, together with user-defined metadata. The only
requirement for users is to have an EPICS base installation.

SOFTWARE ARCHITECTURE

ENeXAr is implemented in Python and it uses the
pyepics [3] and p4p [4] packages for EPICS Channel Access
and PV Access support, respectively.

* JuanF.EstebanMuller @ess.eu
WEP41
504

Figure 1 shows a schematic view of its architecture.
Clients send commands to the ENeXAr service via Remote
Procedure Calls (RPC), using the PV Access protocol. There
are also status PVs to monitor the service. ENeXAr pro-
cesses the commands, some of which will trigger a data
acquisition from EPICS IOCs. The connection to the IOCs
can use either the PV Access (PVA) or Channel Access (CA)

protocols.

PV Access
Channel Access

PVARPC E-

p4p | pyepics

-E PVARPC

ENeXAr

ess_nexus

NextCloud
meas01

NFS
linac-shares

Figure 1: The architecture of the ENeXAr service. On the
top, the IOCs produce data that is acquired by ENeXAr
through EPICS using the pyepics and p4p epics modules.
Clients send commands to the service using PV Access
RPC calls. On the bottom, it is shown examples of storage
backends that can be used.

The service runs on several processes using the Python
multiprocessing library. The main limitation is that write
operations to a single HDF?5 file should always originate
from the same process, since the h5py libraries do not allow
for parallel write operations. As we will see later, that can
be a performance bottleneck, although not very serious.

The acquisitions are then saved into the file storage back-
end. The data is formatted using the NeXus [5] convention
and saved as HDF5 [6] files. Files are created using the
ess-nexus Python package [7]. Files are not indexed and the
directory structure inside the storage backend is completely
managed by the users.

Multiple instances of ENeXAr can be deployed in the
same network, provided that they use a different prefix for
the PV names used for commands and status. That allows, for
example, for each instance to use a different storage backend,
or as a means for balance the load in the service.

USAGE

As stated above, the user controls the data acquisition via
EPICS RPC calls, which can be generated by any EPICS7-

09 Data Acquisition and Processing Platforms

11th Int. Beam Instrum. Conf.
ISBN: 978-3-95450-241-7

compatible client. One option is using the pvcall command
from the command-line. The procedure names are formed
by appending the command to the prefix that identifies the
ENeXAr service. There is also a Python module available,
called enexar-cli [8], which simplifies the usage of RPC
calls from Python and also provides a JupyterLab graphical
interface. Finally, calls can also be generated by other IOCs.
Below one can find the list of commands available,
grouped by function, and with a short explanation.

Acquisition-Related Commands

To start and stop acquisitions, the following procedures

are available:

* ACQUIRE: start the acquisition of a PV into a file. It
could be a continuous measurement that is manually
stopped later on, or only for a user-defined number of
PV updates. The arguments to this call are the PV
name, the file path, acquisition type, and optionally a
set of metadata. It also supports EPICS filters for data
reduction on the IOC side.

e ACQUIRE_S: synchronous version of the ACQUIRE com-
mand that will return only after the measurement is
done. Only useful for short acquisitions.

* STOP: stop the acquisition of a given PV into a file.
Other acquisitions to the same file will continue.

File-Related Commands

These are commands that determine the way ENeXAr
deals with files. They don’t correspond to the way files are
managed by the operating system.

* OPEN: this command is required if the user wants to
append data to an already existing (and closed) file. If
the file does not exists, it is created, although in that
case this command is not needed and the file can be
created using the ACQUIRE command.

ENeXAr Status Using service "ENEXAR:OP-TEST:"

Path PV

IBIC2022, Krakéw, Poland
ISSN: 2673-5350

JACoW Publishing
doi:10.18429/JACoW-IBIC2022-WEP41

» CLOSE: closes a file and does not allow further acqui-
sitions to be appended into the file, unless the OPEN
command is used. If there is any acquisition running,
they are stopped.

 LS: return the output of running the 1s command on
the path passed as a parameter.

Status-Related Commands

The following operations are available for users to check
the status of the acquisitions and files managed by an
ENeXAr instance:

* STATUS: prints all the acquisitions that are taking place.

e IS_OPEN: check if a file is open for appending data.

e IS_ACQUIRING: checks if a PV is being acquired into

a given file.

INTEGRATION IN JUPYTER

At ESS, we use JupyterHub [9] to develop and run Python
scripts that interface with the accelerator control system
for commissioning and operations-related activities. This
infrastructure also allows users to perform data analysis on
the cloud.

In our configuration, the same storage backends that are
used by ENeXAr to save data, are also mounted on Jupyter-
Hub to enable easy access to the users of the data.

The enexar-cli Python module delivers also a graphical
user interface, which is built based on Jupyter Widgets [10].
The UI allows users to graphically start and stop acquisitions,
as well as to check the service’s status. Figure 2 shows
a screenshot of the interface, which is based on another
existing UI called “PV Saver” that was used to take data
acquisitions directly into raw HDFS files. This UI can be
run using Voila [11] to hide all Python code and make it
more user-friendly.

Mode Acquired User Host Time

test/bcm/bcm_enexar_test_20220902_123308Z.h5
test/bcm/bem_enexar_test_20220902_123308Z.h5

Close

Save PVs to NeXus file Using service "ENEXAR:OP-TEST:"

Search PV

PV to be saved

Available PVs ~ [Manual entry

Saving to: test/bcm

MEBT-010:PBI-BCM-001:PRC-TR1-ArrayData
MEBT-010:PEI-BCM-002:PRC-TR1-ArrayData

CONT
CONT

23
23

2022-09-0214:33:30
2022-09-0214:33:30

Filename = bcm_enexar_test

B Stop Saving

Acquisition started

Figure 2: Screenshot of the Jupyter interface to ENeXAr, using Voila [11] to render the Ul On the top, it shows the
acquisitions that are currently taking place and on the bottom, the user can start new measurements.

09 Data Acquisition and Processing Platforms

WEP41

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

@

505 @

©=22 Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

11th Int. Beam Instrum. Conf.
ISBN: 978-3-95450-241-7

WETEST INTEGRATION

One of the use cases of ENeXAr is to take acquisitions
from IOCs while running system integration tests. These
acquisitions can be used for calibration purposes or as part
of the testing process.

AtESS, the Beam Diagnostics group relies on WeTest [12]
for test automation. ENeXAr has been integrated in a forked
version of WeTest to make possible this use case. An exam-
ple of how to use it is shown in Fig. 3.

tests:

- name: "Test 1"
setter: "PV:set"
commands:

- name: "@"
set_value: @
get_value: @

logger:

- pv: "PV:TO:BE:ARCHIVED"
server: "ENEXAR:PREFIX:"
path: "measurements/test"
acquisitions: 1
metadata:

file_user:
name: "juan"
affiliation:
file_entry:
title: "Test"
description: "Testing logger"
instruments:
INSTRUMENT_1:
nxtype: "NXbeam_instrumentation”
name: "Instrument name"

"ESS™

Figure 3: Snippet of a WeTest example test case using
ENeXAr to perform an acquisiton.

BENCHMARK

The performance of ENeXAr was studied in a series
of tests. Two virtual machines (VMs) were used for the
tests, one to run a virtual soft-IOC, and another one running
ENeXAR with the same storage backend as the one used
in production. The status of the VMs and the virtualization
cluster were monitored during the tests. In addition, we
made sure that the two VMs were running on different hosts
in the virtualization cluster, so that the data would be sent
through the network.

The soft-IOC can be configured to generate a certain num-
ber of PVs, each of them with a given array length. During
the tests, the number of PVs is varied, and the array length
is adjusted to match the desired data rate. For our tests, the
IOC was running at an update rate of 14 Hz, which is the
pulse repetition rate of the ESS linac.

The first set of tests consisted of the acquisition of 1, 10,
20, and 50 PVs, storing each PV in a separate file, and
sweeping the data rate from 100 Mbps to approximately
7.5 Gbps. Results are presented in Fig. 4, and they show that
ENeXAr is able to cope with data rates of up to 2.5 Gbps,
except for the case when only 1 long array is archived.

WEP41

wn
>
=)

IBIC2022, Krakéw, Poland
ISSN: 2673-5350

JACoW Publishing
doi:10.18429/JACoW-IBIC2022-WEP41

100 == m e
X 80
©
()
2
Y 60 -
g
()
[@)]
S 40 -
C
] —_—]
5 10
(0]
a 4
201 20
—— 50
0 :
102 103

10C data rate [Mbps]

Figure 4: Storage success rate for different data rates pro-
duced by a single IOC and stored in one file per PV. The
lines correspond to the number of PVs generated by the IOC,
for which the array length is adjusted to match the desired
data rate.

For the second test case, the same set of tests were run
with the only difference that ENeXAr was configured to
store all PVs in the same file. Figure 5 shows the results,
which are slightly worse than in the previous case. For this
configuration, the limit seems to be around 1 Gbps.

100 ——————————— e ————— ——————— —
% 0.
©
()
>
8 60 -
g
(U]
[®)]
8 40 1
C
3 —1
] 10
£ 204 —— 20
—— 50
O T
:|.02 103

I0C data rate [Mbps]

Figure 5: Storage success rate for different data rates pro-
duced by a single IOC and storing all PVs in the same file.
The lines correspond to the number of PVs generated by
the IOC, for which the array length is adjusted to match the
desired data rate.

In the first case, each file is written to the storage backend
from a different Python process. The results are compatible
with the bottleneck being the storage backend. In the second
case, all the data is written to a file from the same process,
and the performance could be limited by the writing speed
of the HDFS5 libraries.

Finally, the same test cases were run using the PV Saver
script, which is the tool that has been widely used at ESS
for dedicated data acquisition. The results are presented in
Fig. 6 and show a lower performance. Only 2 test cases
achieve a 100% storage success rate, for the lowest data
rate of 100 Mbps. This can be due to a combination of

09 Data Acquisition and Processing Platforms

11th Int. Beam Instrum. Conf.
ISBN: 978-3-95450-241-7

two factors: PV Saver runs on a single process and it uses
Jupyterhub’s storage backend, which seems to be slower than
the one used by ENeXAr.

100 Jo—m ey = mm m e m e
X 80
©
(0]
2
8 60 -
o
(0]
[e)]
8 40
c
[} —_— 1
o
& 20- 10
—— 20
—— 50
0 :
102 103

10C data rate [Mbps]

Figure 6: Storage success rate for different data rates pro-
duced by a single IOC, using the PV Saver script on Jupyter-
Hub. The lines correspond to the number of PVs generated
by the IOC, for which the array length is adjusted to match
the desired data rate.

SUMMARY

In this paper, the ENeXAr service was presented, which
is an EPICS-based tool intended to simplify on-demand
data acquisition from IOCs. Its architecture and usage were
also described. Finally, results from performance tests were
presented, showing a significantly better performance than
the previously available alternatives.

The code publicly is available on https://gitlab.

esss.lu.se/ics-software/enexar under the GPLv2 li-
cense.

09 Data Acquisition and Processing Platforms

IBIC2022, Krakéw, Poland
ISSN: 2673-5350

JACoW Publishing
doi:10.18429/JACoW-IBIC2022-WEP41

ACKNOWLEDGEMENTS

Thanks to Emanuele Laface for the development of the
“PV Saver” UI, which somehow triggered the development
of ENeXAr and was used as a base for its Jupyter interface.
Thanks also to Stephane Armanet and Alessi Curri for their
support in setting up the test environment.

REFERENCES
[1] EPICS website, https://epics-controls.org/

[2] Archiver appliance website, https://slacmshankar.
github.io/epicsarchiver_docs

[3] M. Newville, https://pyepics.github.io/pyepics/

[4] M. Davidsaver,
p4p/

https://mdavidsaver.github.io/

[5] NeXus data format website,
org/

http://www.nexusformat.

[6] HDF data format website, https://www.hdfgroup.org/
solutions/hdf5/

[7] N. Milas and C. Derrez, ESS NeXus repository, https://
gitlab.esss.lu.se/ess-bp/ess_nexus

[8] J. F. Esteban Miiller, ENeXAr-cli repository, https://
gitlab.esss.lu.se/ics-software/enexar-cli

[9] JupyterHub website, https://jupyter.org/hubs

[10] Jupyter Widgets website, https://ipywidgets.

readthedocs.io/
[11] Voila website, https://voila.readthedocs.io/

[12] WeTest repository,
extensions/WeTest

https://github.com/epics-

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

WEP41
507 @

@

