Overview of beam diagnostics for PolFEL

oolfel

Robert Nietubyć on behalf of the Team

PolFEL will be a THz – VUV ranged FEL fed with 180 MeV SRF Tesla type linac, operated in cw and lp modes.

In addition, it will contain an inverse Compton Scattering gamma ray source, ultra-fast electron diffration station, SRF cryomodules test stand, and auxiliary laboratories: magnetic measurements, photocathode and laser, clean assembly room.

Goals:

- having a light source
- establish an accelerator laboratory

Consortium

- National Centre for Nuclear Research
- Military University of Technology beamlines
- Warsaw University of Technology LLRF
- Technical University Łódź synchronisation
- Jagiellonian University -e beam diagnostics, survey
- □ Wrocław University of Science and Technology -cryogenics
- University of Zielona Góra HVAC
- University of Białystok inverse Compton scattering station

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research WIERK Instutut kategorita-, JRC colaboration partner

Lodz University of Technolog

Wrocław University of Technology

PolFEL will be a THz – VUV ranged FEL fed with 180 MeV SRF Tesla type linac, operated in cw and lp modes.

in Otwock,

In addition, it will contain an inverse Compton Scattering gamma ray source, ultra-fast electron diffration station, SRF cryomodules test stand, and auxiliary laboratories: magnetic measurements, photocathode and laser, clean assembly room.

Goals:

- having a light source
- establish an accelerator laboratory

Consortium

- National Centre for Nuclear Research
- Military University of Technology beamlines
- Warsaw University of Technology LLRF
- Technical University Łódź synchronisation
- □ Jagiellonian University -e beam diagnostics, survey
- □ Wrocław University of Science and Technology -cryogenics
- University of Zielona Góra HVAC
- University of Białystok inverse Compton scattering station

arodowe Centrum Badań Jądrowych ational Centre for Nuclear Research JIERK instutu kategorii A*, JRC collaboration partner

Lodz University of Technolog

Project is supported by UE with the Smart Growth Operational Programme

National Centre for Nuclear Research, Świerk

30 km SE from Warsaw, 300 km NE from Kraków

Main building

Injector

LHe connections

- QE and its homogeneity and stability in time
- dark current
- plug head retraction and other geometric issues
- UV laser pulse shaping (we aim at a flat top eventually)
- energy excess $hv-\Phi$
- use of other materials, even thise normal conducting

parameter	value		
accelerating frequency	1.3 GHz		
accelerating gradient at cw	> 18 MeV		
energy behind the injector	4 MeV		
energies in IR and THz branches cw	4 MeV - 78 MeV		
energies in VUV branches cw	up to 155 MeV		
energies in VUV branches lp	up to 187 MeV		
Relative energy spread dE/E	< 5.10 ⁻³		
repetition rate	50 kHz		
UV wavelength	257 nm ± 1.25 nm 4.82 eV ± 0.02 eV		
Pb work function	4.25 eV		
UV spot size at photocathode	0.45 mm-1.5 mm		
UV pulse duration	8 ps – 12 ps		
bunch charge	100 pC – 250 pC		
bunch length	90 μm – 3 mm		
beam transverse dimension	< 6.2 mm at dispersive sections		
	< 2.4 mm at injector section		
	< 2 mm elsewhere		
beam pipe Ø (in the most of sites at linac)	16 mm		

Injector diagnostics

Initial section of linac will be widely furnished with diagnostic tools for ASG injector characterisation.

- bunch charge
- position
- energy spectrum
- beam current
- transverse dimension
- length
- emittance
- high resolution current transformer (1)
- BPM (2)
- 60° spectrometer (3)
- two Faraday cups (4)
- two YAG screens (5)
- CDR radiator (6)
- additionally two quads for emittance measurement (7)

YAG, FC and CD radiator chambers (FCY and FCYR)

- FCY is a cylindrical chamber hosting FC and YAG. Its design basd on Solaris documentation. FCY is used in spectrometers.
- FCYR is a connectioin of two parts: FCY and radiator cubic chamber.

YAG or FC is inserted to the beam with two step manipulator. Camera watches the mirror reflecting the screen view

> Radiator emits GHz radiation outward to the optical bench settled on the breadboard nearby

YAG, FC and CD radiator chambers (FCY and FCYR)

- FCY is a cylindrical chamber hosting FC and YAG. Its design basd on Solaris documentation. FCY is used in spectrometers.
- FCYR is a connectioin of two parts: FCY and radiator cubic chamber.

YAG or FC is inserted to the beam with two step manipulator. Camera watches the mirror reflecting the screen view

> Radiator emits GHz radiation outward to the optical bench settled on the breadboard nearby

YAG, FC and CD radiator chambers (FCY and FCYR)

- FCY is a cylindrical chamber hosting FC and YAG. Its design basd on Solaris documentation. FCY is used in spectrometers.
- FCYR is a connectioin of two parts: FCY and radiator cubic chamber.

radiation outward to the optical bench settled on the breadboard nearby

GHz sensing

FCYR chambers are located in the injector section, behind the first BC, in front of each undulators chain and in front of ICS-IP. These sites differ in bunch length thus in CDR frequency

Two methods of signal analysis are being considered:

- 1. recording the spectrum in wide range with and interferometer and wide range diode
- 2. comparison of intensities measured in 3 narrow ranges of the spectrum with 3 narrow band diodes

GHz sensing

FCYR chambers are located in the injector section, behind the first BC, in front of each undulators chain and in front of ICS-IP. These sites differ in bunch length thus in CDR frequency

Two methods of signal analysis are being considered:

- 1. recording the spectrum in wide range with and interferometer and wide range diode
- 2. comparison of intensities measured in 3 narrow ranges of the spectrum with 3 narrow band diodes

THz undulator alignment with pinholes

- 1. Find a magnetic axis of the undulator with Hall probe bench and assign it relative to undulator beams fiducials
- 2. Set pinholes on the magnetic axis of the undulator, using pinhole fiducials
- 3. Steer the electron beam through the pinholes i.e. along U magnetic axis
- 4. Visualize it with He-Ne beam and observe along the beamline

Pin holes + He-Ne laser (P)

THz undulator alignment with pinholes

- 1. Find a magnetic axis of the undulator with Hall probe bench and assign it relative to undulator beams fiducials
- 2. Set pinholes on the magnetic axis of the undulator, using pinhole fiducials
- 3. Steer the electron beam through the pinholes i.e. along U magnetic axis
- 4. Visualize it with He-Ne beam and observe along the beamline

		duty	FC	Yag	CDR	Pin	E [MeV]	q [pC]	τ [ps]	rep [kHz]
INJ	FCYR	Gun diagnostics					2.0 -5.0	<250	3.3	<50
INJ	FCY	Spektrometer					2.0 -5.0	<250	?	<50
LIN1	FCYR	Compression diagnostics					70 - 200	<250	1.2	<50
LIN2	FCYR	U-VUV input diagnoistics					70 - 200	<100	0.27	<50
DOG	FCY	Spektrometer					15-70	<250		<50
LIN3	FCYR	U-IR diagnostics					15-70	<250	1.0	<50
LIN4	FCYR	U-THz, input diagnostics					15-70	<250	0.6	<50
LIN4	Р	U-THz alignment					15-70	<250	0.6	<50
LIN4	Ρ	U-THz alignment					15-70	<250	0.6	<50
LIN5	FCYR	ICS input diagnostics					70 - 200	<250	?	<50

Current transformers

1. High resolution CT

Aim is to measure a separate bunch charge

Achieved with performing Fourier filtering of the signal in at least 5 MHz bandwidth around 180 MHz

Average current will be measued for BPMs calibration

There will be two Bergoz – ICT Turbo installed:

- in the injector diagnostics section
- in front of THz undulator then travelled to other U. This one will be furnished with calibrated pulser.

2. Regular current transformers

4 of them will be distributed along the linac and clamped in changing sites of interest like those behind bends, cryomodules, at the dump etc to control beam througput.

Dark current monitor

Two DCMs are planed:

- in service of e-gun diagnostics,
- behind the last CM, dedicated to control the field emission in the accelerating structures

Collaboration PolFEL - DESY

- 1.3 GHz chamber(s) will be acquired from DESY.
- readout system will be designed and built at NCBJ: low pass filter, amplifier, U(t) \rightarrow P(t) output in V, ADC. Single PCB in μ TCA chassis

60° dipole + FCY

Courtesy of DESY

Dark current monitor

Two DCMs are planed:

- in service of e-gun diagnostics,
- behind the last CM, dedicated to control the field emission in the accelerating structures

Collaboration PolFEL - DESY

- 1.3 GHz chamber(s) will be acquired from DESY.
- readout system will be designed and built at NCBJ: low pass filter, amplifier, U(t) \rightarrow P(t) output in V, ADC. Single PCB in μ TCA chassis

60° dipole + FCY

Courtesy of DESY

Beam position monitors

40 button BPMs of the following chracteristics:

- resolution: ±10 μm
- sensing range: ±3 mm
- button radius:16 mm
- clearance between buttons:

- Bodies, feedthroughs and electrodes will be produced accordingly to specification obtained from DESY and by the the manufacturers previously involved in E-XFEL jobs.
- Then the assembly will be performed at NCBJ with the help of DESY and under its supervision
- First relieses will be tested at Solaris
- During these tests a signal processing method will be optimised
- Libera Spark processors will be used for signal analysis

Energy-BPM are planned to be installed at the BC chicanes, dogleg and 45° bend, that subject however has not been uptaken yet

Beam loss monitors

Beam loss monitors

Integrated PMT module with plastic scintillator Aimed at facility protection

Instrumentation distribution along linac

Current status

Г

8	instrument	achievements	proximate actions planned
ready	CT:	Public tender will be issued these days	Tests
•	BPM:	Public tender will be issued these days	Assembly workshop to be build
			Assembly
			Tests at Solaris and readout tuning
075			Production
	EBPM		Adopt already matured model
	Spectrometer	Mechanical and vacuum design 75% done	Beam dynamics evaluations
			Dipole procurement
	DCM:	Readout electronics design 50% done	Prototype assembly
05			Tests at DESY
U.5	FCY, FCYR:	Mechanical and vacuum part 3D design 90% done	Electric design
			Specification for manufacturer
			Procurement
	CDR, GHz signal	General concept is being considered	Decision
	processing:		Specification
			Procurement
0.25			Assembly
			Tests at Solaris
	Pinholes and He-Ne	Mechanical and vacuum part 3D design 40% done	Completion
	inlet		Specification
	BLM:	Prototype ready and tested	Output signal analysis
			Tests at Solaris
			Production

The work is been carried out by:

Solaris team: Ada Wawrzyniak, Andrzej Marendziak, Roman Panaś, Grzegorz Kowalski **NCBJ team:** Roch Kwiatkowski, Paweł Czuma, Marcin Terka, Marcin Staszczak, Paweł Krawczyk, Marek Wójtowicz, Dmytro But

I thank them for the efforts

Thank you for the attention

Dziękuję za uwagę

www.ncbj.gov.pl