Beam tuning Studies in the ESS MEBT-

IBIC'22 Conference

Natalia Milas (presenter) N. Milas, M. Akhyani, R. A. Baron, C. S. Derrez, M. Eshraqi, Y. Levinsen, R. Miyamoto, D. Noll, R. Tarkeshian, I. Vojskovic and R. Zeng

Commissioning Highlights

The ESS MEBT

• Current:

• Position and Phase:

✓ 7 stripline Beam position monitors (BPMS) and 1 fast BPM for energy measurement

- Transverse:
 - ✓ ☐ Wire Scanners (H/V)
 - ✓ ☐ EMU (H/V)
- Longitudinal:
 - 🗙 1 Bunch Shape Monitor
 - ♂ 3 Buchher cavitites for longitudinal matching

2022-09-13 PRESENTATION TITLE/FOOTER

Longitudinal Tuning: RF Cavities

Phase signals from two MEBT BPM were compared in the time domain and gave 3.6 ± 0.1 MeV, with meticulous calibration of cable distances and delays performed in advance. **[MOP07 poster]**

First Phase Scan calibrations done during 2022 for the MEBT Bunchers. Results are presented in the table below. [TUP35 poster]

Table 2: MEBT Bunchers Amplitude Calibration Factors

Cavity	Х
Buncher 1	0.96 ± 0.02
Buncher 2	0.98 ± 0.01
Buncher 3	0.89 ± 0.01

Longitudinal Tuning: Twiss

Bunch length

$$u(\omega, \sigma) = Qf(\omega) \exp(-\sigma^2 \omega^2/2)$$

Sum signal

Comparison of the Fit (minimization using an envelope code) and design

Table 3: Longitudinal Parameters at the RFQ-MEBT Interface for a Low Current Beam

Parameter	Design	Fit
$\varepsilon_{N,z}$ (π mm mrad)	0.287	0.18 ± 0.04
α_z	-0.255	0.2 ± 0.4
β_z (m)	0.496	0.2 ± 0.1

1.0

1.5

2.0

Position [m]

2.5

3.0

3.5

4.0

Bunchers 1 and 2 ON

1.0

Buncher 1 ON

Transverse Tuning: Wire Scanners

Table 4: MEBT Initial Transverse Twiss

Parameters	Design	Fit
$\varepsilon_{N,x}$ (π mm mrad)	0.139	0.53 ± 0.01
α_x	-0.052	0.76 ± 0.02
β_x (m)	0.281	0.26 ± 0.07
$\varepsilon_{N,y}$ (π mm mrad)	0.138	0.3 ± 0.1
α_y	-0.430	-1.0 ± 1.0
β_y (m)	0.498	0.7 ± 0.2

Transverse Tuning: Emittances

The emittance measurement units (EMUs) in the MEBT, a pair of slit and grid systems, became available in the last two weeks of the commissioning step for the, and a few preliminary measurements were made. We could not perform new measurements with the design optics fully set nor repeat the Wire Scanners measurements simultaneously with emittance scans.

 $\varepsilon_{Nx} = 0.44 \pi \text{ mm mrad}$

Results and Discussions

ess

Longitudinal Plane:

- Cable calibration need to the checked
- Envelope model might be too simple (tails and looses can have an impact)
- Cross checks with the Fast BPM data in time-domain ongoing.

Transverse Plane:

- Again, envelope model might not represent the whole beam correctly.
- Non gaussian beam (?)
- Position variation intra pulse
- No info about the RFQ input beam
- RF feedback/feedforward not used 100% of the time

Wire 3

Outlook

- Beam trough RFQ and DTL with good transmission
- Commissioning and initial tests of most diagnostics and the MEBT done
- In order to be able to understand further de dynamics and beam quality in the MEBT we need:
 - Re-do the LEBT characterization and match to RFQ (issues with the source repeller)
 - Check the BPM cables calibrations
 - Study the Iris impact on the transverse emittances
 - Go beyond envelope for the model
 - Perform wire and EMU scans for the same settings (cross correlate results)
 - Make sure beam position within the pulse is stable
 - Have Bunchers on closed loop and with full feedback/feedforward to achieve a stable longitudinal setting during the measurements
 - Improve slit and grid motion/settings for EMU in order to have a better coverage.

