

Sichen Li :: Scientific Computing, Theory and Data :: Paul Scherrer Institut

Novel Approaches for Forecasting of Beam Interruptions in Particle Accelerator

Sep.12 2022 at International Beam Instrumentation Conference

- Introduction and problem formulation
- Model 1: Recurrence Plot Convolutional Neural Network model
- Model 2: Logistic Lasso regression model
- Model comparison in classification and real-time metrics
- Potential instrumentation
- Conclusion and outlook

- Forecasting the interlocks in HIPA
- Input: Channels signals of 5 Hz from all monitors of HIPA, total 376
- Target: Interlocks beam interruptions of HIPA

- Binary classification
- Class Positive (1): interlock samples close to interlock
- Class Negative (0): stable samples far from interlock

Recurrence Plot - Convolutional Neural Network [1]

- 1. Take the two classes of samples, of size (376, sample length)
- 2. Transform each 1D time series into 2D Recurrence Plot
- 3. Train with *CNN* and get probability output $\in [0, 1]$

Complex model, yet high False Positive rate!

- **Two sample test** [2]: Statistically compare *Maximum Mean Discrepancy* (*MMD*) of samples taken at t_0 and t_1 before all interlocks
- 0.2 s is abruptly different, essentially no gradual change
- Positive class of RPCNN is taken before $1\,\mathrm{s} o$ fail to capture the difference

Model 2 - Logistic LASSO regression

Penalized regression with the Least Absolute Shrinkage and Selection Operator 1. Class Positive (1): interlock samples, taken $t_1 = 0.2s$ before interlock Class Negative (0): stable samples, taken $t_0 = 10s$ before interlock

2. Input $\{\mathbf{x}_i \in \mathbb{R}^d\}_{i=1}^n$, label $\{y_i\}_{i=1}^n \in \{\pm 1\}$, fit weight $\omega \in \mathbb{R}^d$

$$\min_{\omega} L = \min_{\omega} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log\left[1 + \exp\left(-y_{i} \cdot \omega^{T} \mathbf{x}_{i}\right)\right]}_{\text{logistic loss for binary classification}} + \underbrace{\lambda \|\omega\|}_{\text{regularization}}$$

3. Also a probability output $\in \left[0,1\right]$

Model comparison – classification metric

Figure: The Receiver Operating Characteristic (ROC) curves of both models.

- True positive (TP), False positive (FP) according to 1min inspection window
- Beam time saved T_s in any given time: $T_s := 19 \cdot N_{TP} 6 \cdot N_{FP}$

Figure: Examples of real-time TP and FP of the LASSO model.

Model	Ν _{TP}	$N_{TP}/N_{int}(\%)$	N_{FP}	$\mathbf{T_s} \; (Min/day)$
RPCNN	277	23.2	5408	-10.53
LASSO	1134	95.1	1214	5.63

Table: Real-time metrics of both models in 2 months with $N_{int} = 1192$.

EIT Potential instrumentation for recover operation

• Need to reduce 0.2 mA (10% beam current) inside 200 ms time scale, according to the Lasso model

Instrumentation	Facility	Time scale (ms)	Comment
Kicker AVKI	HIPA	0.005	Used in interlock system
Kicker [3]	PROSCAN	0.05	Only response time
Deflector plates [4]	PROSCAN	0.2	Only response time
Beam blocker [3]	PROSCAN	60	Only response time
Collimator KIP2 [5]	HIPA	66.7/0.2mA	Response time ignored

Table: Potential instrumentation for fast adjustment of beam current.

- Formulate forecasting problem into binary classification
- RPCNN model transforms 1D time series into 2D images \rightarrow complex, high false positive, improper input
- Two sample MMD test shows beam interruptions are more abrupt than gradual
- LASSO model outperforms RPCNN in both classification and real-time metrics
- Further experiments on real-time implementation, specific types of interlocks and recover operations are ongoing

S Li, M Zacharias, et al.

A novel approach for classification and forecasting of time series in particle accelerators. *Information*, 12(3):121, 2021.

A Gretton et al.

A kernel two-sample test.

The Journal of Machine Learning Research, 13(1):723–773, 2012.

I Jirousek et al.

The concept of the proscan patient safety system. *Proc. ICALEPCS'9*, pages 13–17, 2003.

P F Carmona et al.

Continuous beam scanning intensity control of a medical proton accelerator using a simulink generated FPGA gain scheduled controller.

Proc. PCaPAC'12, pages 242-247.

J Stetson et al.

The commissioning of PSI Injector 2 for high intensity, high quality beams.

Proc. Cyclotrons'13, pages 36-9, 1992.

Wir schaffen Wissen – heute für morgen

Thanks to

- Mélissa Zacharias .
- Dr. Jochem Snuverink
- Dr. Jaime Coello de Portugal
- Dr. Davide Reggiani .
- Prof. Dr. Fernando Perez-Cruz
- Dr. Andreas Adelmann

