

First measurement of longitudinal profile for the of high-power and low-energy H⁻ beam by using bunch shape monitor with graphite target

- Introduction: Bunch-Shape Monitor (BSM)
- New target for the front-end BSM
- Beam tests of BSM using the graphite target
- Longitudinal measurement with BSM at front-end
- Summary

JAEA/J-PARC Sep. 15th 2022 Ryo Kitamura on behalf of J-PARC linac

Introduction

- Japan Proton Accelerator Research Complex (J-PARC)
 - 400-MeV linac, 3-GeV Rapid-Cycle Synchrotron (RCS), and 30-GeV Main Ring (MR).
 - Linac accelerates the negative hydrogen ion (H⁻) beam with a peak current of 50 mA.
- Beam studies at the front-end are being conducted to reduce the beam loss.
 - Important matching section : Medium-Energy Beam Transport1 (MEBT1)
- MEBT1 should be tuned to mitigate the emittance growth due to the space-charge effect.
 - Both the transverse and **longitudinal** matches are required for the high-power beam.
- Motivation: understanding and improving longitudinal beam dynamics at MEBT1

Structure of MEBT1 Scraper Chopper Buncher1 Buncher2 DTL QM2 QM3 QM5 QM6 QM7QM8 QM1 JM4 **RFQ** Beam WSM WSM **BSM WSM:** Wire Scanner Monitor

- Functions of MEBT1
 - (1) Beam matching of the DTL $\rightarrow 8$ quadrupoles and 2 bunchers •
 - (2) Bunch structure for the RCS injection \rightarrow <u>RF chopper system</u>
- Low-energy (3-MeV) H⁻ beam in the MEBT1 is strongly affected by the space-charge force.
- Compared with the transverse monitor (WSM), the longitudinal monitor was insufficient.
- **BSM** was installed for the longitudinal beam tuning.

Bunch-Shape Monitor (BSM)

- BSM is a standard longitudinal beam profile monitor for the linac.
 - Secondary electrons are produced by the interaction between H⁻ beam and BSM target.
 - Note) Negative bias voltage was applied to the BSM target.
 - Electrons related to longitudinal profile of H⁻ beam are modulated by RF field in deflector.
- Problem of BSM in the MEBT1:
 - Heat loading derived from the high-power beam caused the target wire breaking.
- New BSM target material for the MEBT1 was developed using the graphite material.

Thermal estimation for BSM targets

Temperature calculation

Which is better?

- There were 3 candidates for the BSM target to mitigate the heat loading from H⁻ beam.
 - (1) Tungsten: used as the standard target material for the BSM.
 - \triangle Wire breaking frequently occurred due to the heat loading.
 - (2) Carbon Nano Tube (CNT): used for the WSM to measure transverse profiles.
 - O Its low density is suitable to mitigate the heat loading.
 - (3) Graphite (Highly Oriented Pyrolytic Graphite: HOPG)
 - Used for the beam scraper.
 - O Its high thermal conductivity is suitable to mitigate the heat loading.

CNT target wire

CNT wire mounted on WSM

Microelectronics reliability, **64** pp.484-488 (2016).

CNT wire on BSM target holder

Proc. of IPAC2019 ,WEPGW033 (2019).

- CNT wire has been used for the stable target wire of the WSM in the MEBT1.
- It is easy to replace the CNT wire with the tungsten wire.
- Question: Can the negative bias voltage be applied to the CNT wire to extract secondary electrons as BSM?
- Offline test of applying the bias voltage was conducted.

Emission electrons from CNT wire

HOPG target

- ←J-PARC beam scraper (carbon composite)
 - \downarrow HOPG used as heatsink

HOPG target for BSM

Microelectronics reliability, 64 pp.484-488 (2016).

Proc. of PASJ2016, MOP005, pp.310-313 (2016).

- HOPG was originally the candidate material for the beam scraper of the MEBT1.
 - Its high thermal conductivity was suitable to mitigate the heat loading.
 - It was easy to apply the negative bias voltage from the result of the offline test.
- Target size of the HOPG (~1 mm²) is thicker than the CNT wire (~ ϕ 0.1 mm).
 - Question: Does the thick HOPG target affect the measurement of longitudinal profiles?
- Beam test of the target-size effect for the BSM using the HOPG was conducted.

Beam test at test stand

Beam condition

Peak current	~50 mA
Energy	3 MeV
Pulse length	50 µs
Repetition	1 Hz

- Test stand in the J-PARC linac building was used for the beam test of the HOPG-BSM.
- BSM was installed in diagnostic BL after the 3-MeV RFQ.
- Beam condition was the same as the MEBT1.
- Stability test of the target: ~6h/day irradiation for a month
- Visually no damage on the HOPG target.

Study of target-size effect

Туре	Width [mm]	Thickness [mm]
Large	1.0	1.0
Small	0.2	

- Target size affects the Time-of-Flight (ToF) of extracted secondary electrons.
 - Large target smears the measured longitudinal profile.
- ToF effect was estimated by the Geant4 simulation and corrected.
- Target-size effect is confirmed by the ToF correction.

Tuning horizontal target position

- HOPG target position was tuned to measure longitudinal profiles at the beam center.
- Horizontal profile was measured by detecting the current induced in the HOPG target, which is the same method as the WSM.
- Measured horizontal profiles with the BSM using the HOPG was consistent with the WSM result using the CNT wire.
- Idea: Can the dependence of longitudinal profiles be measured in terms of the horizontal direction?
- Longitudinal and transverse profiles can be measured with the HOPG-BSM.

Longitudinal and transverse profiles

- Advantage of our new BSM using the HOPG target:
 - Measuring longitudinal profiles at any horizontal position.

0.5

0

- Longitudinal(ϕ) and horizontal(x) profiles were measured.
- Space-charge effect strongly affects profiles in MEBT1.
 - Expectation: longitudinal and transverse profiles are coupled under the space-charge effect.
- Quadrupole (X focusing) was tuned on.
- Change of the 2D profile was successfully observed.

φ-x coupling measurement

- Transverse (horizontal; x) focusing affects longitudinal profile through space-charge force.
- Dependence of φ (phase)-x(horizontal) profile was measured by scanning QM focusing.
- Correlation between longitudinal and transverse profiles was observed.
 - HOPG-BSM is the interesting instrument to study the space-charge effect.
 - Correlation between horizontal, vertical, and longitudinal profiles can be observed.
- HOPG target is valuable to develop the frontier of the high-power beam.

Longitudinal measurement at MEBT1

Setup of MEBT1 (upstream)

- Longitudinal beam parameters (Twiss and emittance) were measured using the BSM.
 - Amplitude scan method with buncher.
 - Required time ~ 1 hour/scan
- When the amplitude of the buncher was scanned, the dependence of longitudinal profiles was observed as expected.

Waveform of BSM with strong focusing

Waveform of BSM with weak focusing

Procedure to evaluate longitudinal parameters

• Real initial parameters are estimated with 3D Particle-In-Cell code (IMPACT).

Fitting result using simulation

- Longitudinal profiles were measured with the BSM by scanning the buncher amplitude.
 - Fitting curve of the amplitude scan by IMPACT was consistent with the measurement.
 - Simulated longitudinal profiles were consistent with measurement.
 - Estimated initial Twiss parameters reproduced the experimental result.

Fitting result using simulation

- Longitudinal profiles were measured with the BSM by scanning the buncher amplitude.
 - Fitting curve of the amplitude scan by IMPACT was consistent with the measurement.
 - Simulated longitudinal profiles were consistent with measurement.
 - Estimated initial Twiss parameters reproduced the experimental result.
- Design Twiss parameters were calculated using the ion source and RFQ simulation.
 - Measurement was consistent with design simulation for Twiss and emittance.
- Our BSM and MEBT1 system were well understood in the high-power operation.
 17/18

Summary

- New BSM has been developed to measure the high-power beam in MEBT1.
- Performance evaluation of the BSM using the HOPG target was conducted.
- First measurement of longitudinal beam profile was demonstrated using BSM.
 Measurement was consistent with the design simulation in the MEBT1.
 - As further application, our new BSM is the attractive and powerful instrument to study the space-charge effect at the front-end.