

Acceleration, Transport and Diagnostic of Protons from Laser-Matter Interaction

Giada Petringa¹, PhD giada.petringa@Ins.infn.it

¹INFN-LNS, Laboratori Nazionali del Sud

²ELI-Beamlines, Institute of Physics of CAS

G.A Pablo Cirrone¹, R.Catalano¹, G. Cuttone¹, L. Giuffrida², M. Guarrera¹, A. Kurmanova¹, F. Schillaci², S. Tudisco¹ and D. Margarone²

2

1. A laser as accelerator machine

2. Diagnostics and dosimetry of laser-driven beams

3. ELIMED @ELI-Beamlines

4. Future perspectiveness @LNS-INFN

A laser as accelerator machine

Laser-plasma ion acceleration: a super compact solution INFŃ

Istituto Nazionale di Fisica Nucleare

Forward

Laser-driven ion acceleration Conventional ion acceleration LHC @ CERN 0.1-10 μm - circular tunnel (27 km long!!!) - superconductive electromagnets Rear (Vacuum) Front (Vacuum) Target - proton energy (per beam): 6.5 TeV Hot e current Accelerated Ions Accelerated lons Hole Boring Return e⁻ sheath (RPA) current aser Pulse (TNSA) The **energy gain** for ions in a laser-plasma accelerator is of several tens of MeV/ μ m (just few tens of MeV/m in conventional E-field max \approx few I0 M V /meter (Breakdown) accelerators due to breakdown effects)

Giada Petringa, PhD - giada.petringa@Ins.Infn.it

The main ingredients

5

Solid state laser, typically Ti:Sapphire

700-1000 nm 20 — 100 fs 20 mJ — 5 J

1 PW/1µm spot size corresponds to 10²³ w/cm²

That is the equivalent of the pressure of 10 million Eiffel Towers on the tip of your finger!!

Seriously extra

Curtesy of Gerard Morou Ecole Polytechnique (F)

An high power (TW) short-pulse laser (20 500 fs)

Two classes of lasers are mainly used for ion acceleration

Two classes of lasers are mainly used for ion acceleration

- High energy CPA systems
- Nd: Glass technology
 - •100s J energy, up to PW power
 - •Low repetition rate
 - 100s fs duration

Two classes of lasers are mainly used for ion acceleration

6

- High energy CPA systems
- •Nd: Glass technology

•100s J energy, up to PW power

•Low repetition rate

•100s fs duration

•I_{max}~ 10²¹ Wcm²

VULCAN, RAL (UK) Phelix, GSI (De) Trident, LANL (US) Texas PW, Austin (US) ... **Ultrashort CPA systems**

•Ti:Sa technology

10s J energy, up to PW power

•1-10 Hz repetition

•10s fs duration

• I_{max}~ 10²¹ Wcm²

GEMINI, RAL (UK) Draco, HZDR (De) Pulser I, APRI (Kr) J-Karen, JAEA (J)

Proton energy scaling with short and long pulse drivers

TNSA Ion beams properties

Short duration source: ~ 1 ps

8

- High brightness: $10^{11} 10^{13}$ protons/ions in a single shot
- High current (if stripped of electrons): kA range
- Compactness: E~1-10 TV/m with acceleration lengths ~ μ m
- Divergency: ~ 10s degrees
- Broad energy spectrum

Ion beam from TARANIS facility, QUB

E ~10 J on target in 10 μm spot Intensity: ~10¹⁹ W/cm² duration: 500 fs Target: Al foil 10um thickness

Can be a high power laser competitive for ion acceleration?

- 1. Enhancing the maximum proton energy and flux
- 2. Reducing the beam angular divergence or improving the beam homogeneity
- 3. Reducing the ion contamination of the beam

4. Developing new technologies and strategies to shoot at high repetition rate (1-10 Hz)

Main adopted solutions to select and transport proton beam

Dipole field: 0.9 T Length: 100 mm Energy selection: up to 30 MeV proton

Single dipole for energy selection

F Hanton, et al. Scientific Reports 9, 4471 (2019)

On-axis magnetic field up to 19.5 T Rep rate: up to 3 pulse per minute

Pulsed solenoids F Kroll et al. <u>Nature Physics</u> 18, 316–322 (2022)

G Petringa, PhD - giada.petringa@Ins.infn.it

Diagnostic and dosimetry of laser-driven beams

Which diagnostic for laser-driven beams?

Diagnostic and dosimetry of laser-drive ion beams is still a challenge

up to 10E11 ppb in 10 ns ----- up to 10E9 Gy/s

"Passive" detectors

Reliable

12

- Not affected by the electromagnetic noise
- Not affected by the beam dose rate
- Easy to handle
- Not good for high repetition rate lasers [Radiochromic films, CR39 track detectors, image plates]

"Active" detectors

- Reliable
- Could affected by the electromagnetic noise
- Could affected by the beam dose rate
- Real-time acquisition and analysis
- Necessary for high repetition rate laser systems

[Thomson-like spectrometers, Time-of-Flight detectors, Integrated Current Transformer ...]

Example of passive detectors

Radiochromic films beam profile and energy

spectra reconstruction

Review of Scientific Instruments 80, 033301 (2009): **CR39** Flux measure Energy spectra

Microscopic images of CR-39 samples exposed to a single laser shot (example 3), covered with (a) 25 μ m and (b) 35 μ m of aluminum, respectively.

M Seimetz, et al. Review of Scientific Instruments 89, 023302 (2018);

Image plate are photostimulable phosphor screen [BaFBr:Eu2+]

Flux measure Energy spectra Beam distribution

PSL: photo stimulated luminescence

Laser -driven spectra of protons and deuterons

D O Gloving et al. JINST 16 T02005 (2021);

Example of active detectors

083303 (2019);SI 11 C10005 (2016)

Scintillators both in single and stack configuration

Beam profile and energy spectra reconstruction

FIG. 1. A schematic of the experimental setup. A 1053 nm high intensity laser pulse is focused by a f/2 parabolic mirror onto a 5 μ m Cu target to generate TNSA proton beams. The proton beam is measured either by the TP spectrometer to measure the energy spectrum or by the scintillator imaged onto a CCD with/without a microscope objective system to diagnose the spatial resolution.

H Tang et al. Rev. Sci. Instrum. 91, 123304 (2020);

ELIMED solution @ELI-Beamline

E4: ion acceleation and target area @ELI

Laser aviability in E4

				\
Beamline	L1 ALLEGRA	L2 DUHA	L3 (HAPLS	L4 ATON
Peak power	7 TW	100 TW	`_≥1 PW	10 PW
Energy in pulse	100 mJ	1.5	≥30 J	 ≥1.5 kJ
Pulse duration	<15 fs	<15 fs	≤30 fs	≤150 fs
Rep rate	kHz	20 Hz	10 Hz	1 per min
Supplier	Pump lasers from industry (Trumpf)	Subsystems Effrom STFC	LLNL	National Energetics
ELI-Beamlines	OPCPA pulse chain, pulse compressors, controls & timing systems	Pump laser subsystems, ps OPCPA, controls & timing systems	Compressor, short pulse diagnostics, controls & timing systems	Compressor design, OPCPA design, short pulse diagnostics, timing system

ELIMAIA: a User beamline

ELIMAIA: a User beamline

ELIMAIA: a User beamline

ELIMAIA installation in E4

ELI Multidisciplinary Applications of laser-Ion Acceleration

Dosimetric approaches in E4

Faraday cup in a special design for absolute dosimetry

Dual gap ionisation chamber for ion recombination correction

Radiochromic films and plastic detector for spectroscopy(first phase, low-energy)

Relative dosimetry

- Time Of Fligth configuration
- Charge integration for normalisation purposes
- Scattering foil for beam diffusion

- Two adjacent IC, gaps of 5 mm and 10 mm, independently biased (maximum applied voltage ± 1000 V and ± 2000 V, respectively)
- Anode: thin layers of 5 μm of copper and 2 μm of nickel, deposited on a 25 μm layer of kapton
- Cathode:12 µm-thick layer of aluminized mylar

Absolute dosimetry: Faraday cup

22

The cylindrical symmetry of the electric field provided by the external electrode is broken due to the presence of the internal one.

The resulting effect is a strongly asymmetric electric field, characterized by a significant transversal component able to maximize the deflection of the secondary electrons generated by both the entrance window and the cup.

September 2021: pre-commissioning phase @ELIMAIA!

Timofej Chagovets, Pablo Cirrone,Lorenzo Giuffrida, Filip Grepl,Valeria Istokskaia,Vasiliki Kantarelou, Georg Korn, Tadzio Levato, Daniele Margarone, Giada Petringa, Francesco Schillaci, Stanislav Stancek,Marco Tosca, Maksym Tryus, Andriy Velyhan,Martina Zakova

More than 20 online diagnostics working @1Hz repetition rate!

charged particles, neutrons, xrays, eletromagnetic pulse, electrons, plasma, laser on target

Thompson Parabola, Time Of Flight detectors, Ion Collectors and Calorimeter for gamma emission

G Petringa, PhD - giada.petringa@Ins.infn.it

23

Courtesy of D. Margarone, QUB (UK) and ELI-Beamline

PRAGUE project

²⁴ Proton RAnGe measure Using silicon Carbide

Realize the **first** on-line dosimeter for conventional and laser-driven ion beams based on a **new generation of Silicon Carbide**

dose rate independent

LET independent

Inear responce with absorbed dose

□ higher spatial resolution

□ saving time

application in biological irradiation

IMPULSE-

The assembled detector

G Petringa, PhD - giada.petringa@Ins.infn.it

Adopted Silicon Carbide

Properties	Diamond	Silicon	4H-Silicon Carbide
Energy Gap [eV]	5.45	1.12	3.26
Relative dielectric constant ϵ_{r}	5.7	11.9	9.7
Breakdown electric field (MV/cm)	10	0.2-0.3	2.2-4.0
Density (gr/cm ³)	3.52	2.33	3.21
Atomic Number Z	6	14	10
e-h pair energy (eV)	13	3.62	7.78
Saturated electron velocity (10 ⁷ cms ⁻¹)	2.2	1.0	2
Hole mobility [cm ² /Vs]	1200-1600	450-600	100-115
Electron mobility [cm ² /Vs]	1800-2200	1400-1500	800-1000
Threshold displacement energy (eV)	40-50	13-20	22-35
Thermal conductivity (W/cm °C)	20	1.5	3-5
Max working temperature (°C)	1100	300	1240
Hole lifetime τ_{p}	10 ⁻⁹	2.5*10 ⁻³	6*10 ⁻⁷

PRAGUE detector prototype

27

The First Prototype was realized and tested @PTC of Trento (IT) @Ústav jaderné fyziky av cr (CZ) @INO-CNR (IT)

The system was entire simulated with TOPAS

The current will be converted in voltage through an I-V converter

Experimental run @APSS Trento protontherapy center

²⁸ Main aim of the experimental run: depth dose deposition extimation

Proton beam energy: 70 MeV Fluence: 10^6 s/cm² Irrafiation field: circular shape; 10 mm in diameter

G Petringa, PhD - giada.petringa@Ins.infn.it

Experimental run @APSS Trento protontherapy center

29

EBT3 Peak - Plateaux ratio	SiC Peak - Plateaux ratio	3.92% discrepancy
4.08	3.92	

G Petringa, PhD - giada.petringa@Ins.infn.it

Future perspectiveness @LNS

I-LUCE: INFN Laser indUced aCcEleration facility

Giada Petringa, PhD - giada.petringa@Ins.Infn.it

