A High Performance Scintillator Ion Beam Monitor (SBM)*

Daniel Levin, Nick Ristow, Claudio Ferretti, Alex Kaipainen → University of Michigan

Peter Friedman
→ Integrated Sensors, LLC, Palm Beach Gardens, Florida

Tom Ginter

→ Facility for Rare Isotope Beams, Michigan State University

Talk presented at IBIC 2022 Krakow, Poland Sept 12-17, 2022

* The SBM is a patented invention by <u>Integrated Sensors, LLC.</u> This work funded DOE Office of Science, Award No. DE-SC0019597

System Overview

Motivation

I. Precision beam analysis // display results in real-time

II: related to high dose rate (FLASH) radiotherapy beam monitoring (PTCOG60-Miami, FRPT21-Vienna, FRPT22 Barcelona)

this presentation

Main Features

- Novel-use thin scintillators: very high sensitivity, clean imaging
- Scintillators are insertable/retractable without breaking vacuum using translation arm
- High resolution beam imaging : beam centroids, widths, amplitudes
- Thin, low low mass scintillators: higher energy beams are transmissive
- Wide dynamic range of ion currents: single ions (at low energy) to nA/cm²

SBM configured as "Six-Way-Cross" (6WC) with 3 orthogonal lines

Line 1: beam path (vacuum) fore/aft

Line 2: optical: light paths to camera top + alignment targets bottom

Line 3: scintillator ladder travel

University of Mich

Scintillators - Two types of thin, non-hygroscopic and radiation resistant materials^{*}

Type 1: Polymer Material (PM): a semicrystalline, organic plastic polymer

- superior physical properties: tough, thin to ultra-thin, can cover large areas
- high light emittance --> observed large amplitude signals compared to polyvinyltoluene (& polystyrene) based plastic scintillators
- semicrystalline → hazy appearance, no internal reflections, more light escapes the surfaces
- available in variety of thickness. We tested 1 μ m to 200 μ m.
- thin films attractive for transmissive beam applications (e.g., continuous beam monitoring & radiotherapy)

Type 2: Hybrid Material (HM): Inorganic polycrystalline ceramic hybrid

- active layer embedded in a polymer matrix. Support substrate and protective polymer layer
- available in large area sizes & thinner than single crystal CsI(Tl), (e.g. < 0.5 mm)
- high light emittance: generates significantly larger amplitude signals than CsI(TI)
- no internal reflections

PM and HM are designed and widely used for other purposes

* Four patents issued to Integrated Sensors on PM & HM materials for beam monitoring applications.

DAQ - Display System

Image processing:

- background subtraction
- faulty pixel removal
- perspective & rotation transformations
 - → display in beam coords

Analysis:

- beam finding
- beam profiling (centroids, widths)
- peak amplitude

Display

- False color image
- real-time analysis
- updating graphics

Test Results

Location	Source	Energy [MeV/n]
UM Lab Testbench	<mark>β (</mark> ⁹⁰ Sr)	~1
Facility for Rare Isotope Beams (FRIB)	⁸⁶ Kr ⁺²⁶	2.75
Michigan Ion Beam Laboratory (MIBL)	р	1 - 6
Notre Dame Radiation Laboratory (NDRL)	e	8

UM Benchtest of Scintillators: Compare HM to CsI(TI) single crystal

Result 1: ٠

HM offers a clean beam image: free of reflections, blooming, distortion & sidewall emissions

Result 2: ٠

HM/CsI(TI) relative signal strength normalized to material thickness: (ADC/mm) at 0° 12x

UM Lab Test of Scintillators: Compare PM to BC400

 $\sim\!200~\mu m$ thick + ^{90}Sr source + 1 s exposures + 24 dB pixel gain

Result:

BC400 (PVT based): image more sparse hit distribution, weak signal

PM:

Clean image with well delineated source robust signal above background.

Mean ratio of PM/BC-400 \sim 5x (93:19)

Facility for Rare Isotope Beams (E. Lansing, Mich) (FRIB ReA3 beamline)

Project objective: provide FRIB with advanced & fast beam monitoring. effective cost of beam operations: \gtrsim \$20K/hr \rightarrow high premium for fast tuning technology

- Ion: ⁸⁶Kr⁺²⁶ at 2.75 MeV/n (236 MeV/nucleus)
- Current: 5-10 pps (single particles) up to 520,000 pps

Selected results:

- 1. PM scintillators
 - Beam imaging
 - Signal amplitude vs thickness
 - Signal amplitude vs current
 - Transmission
- 2. HM type scintillator:
 - Single particle detection
 - Response vs beam current
 - Beam tracking & profiling

Signal and Beam Imaging in PM: beam current = 520,000 pps

src/12_src_30.tiff 1D

University of Michigan & Integrated Sensors, LLC

Result 1: Clean beam profile is imaged. ADC signals well above noise

Result 2: Another ~5x reduction to ~1 kHz beam currents would be detectable

Signal and Beam Imaging in HM Scintillator: Beam set to 5 – 10 Hz

Beam current in HM scintillator:

Meausured rate vs FRIB "given" rate

Result 1:

The SBM can measure beam currents that are now determined by 4 different FRIB devices:

- Faraday Cup
- Calibrated beam attenuator
- MCP detector
- Silicon detector

Result 2:

SBM measurement is linear over 5 orders-of-magnitude

Beam finding, profile analysis & display in real-time

Conditions:

- 1) Beam current 50 pps − very low rate. → use HM scintillator
- 2) Beam width ~ 2 mm
- 3) Beam moved in square pattern by control room operations
- *4) 1 s frames*

Conclusion

1) SBM provides a precise beam profiling in real-time ($\lesssim 1 \text{ Hz}$)

2) Data from:

FRIB -- linear to *at least* **5 orders-of-magnitude** for ⁸⁶Kr⁺²⁶ MIBL -- 1-6 MeV protons ~10¹¹ pps/cm² NDRL -- 8 MeV pulsed **electron** beams to **4x10¹¹ pps/cm²**

==> response range: single particles to 10¹¹ pps without breaking vacuum

- 3) PM: thin to ultra-thin materials produce clean imaging and accurate profiling
 - Ultra-thin PM tested: from \sim 1- 200 um sample thickness
 - HM: order-of-magnitude higher signal output compared to a much thicker CsI(TI) standard

 \rightarrow allows for very high sensitivity (single particles) at FRIB etc.

