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) Outline

* Requirements of beam stability

* The means to reach high beam stability

* Sources perturbing beam stability
* Diagnostics monitoring beam stability

* Feedbacks increasing beam stability

 Summary and outlook
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B Trend of synchrotron light sources: ultra-low emittance
« Emittance reduction by two order magnitude: increasing brightness and
coherence of photon beam
* Photon users: higher spatial resolution, higher energy resolution and

faster scan time
* Beam stability: a crucial parameter to define resolution of experiments
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B Beam stability requirements at ultra-low emittance lattice

* Electron beam stability are driven by photon beam stability requirements

* Phase space stability:
* 100s — 10s pm-rad emittance: a few um beam size and beam divergence
* Tighter beam position/angular stability: submicron

* Time domain stability

* From hours to microseconds, depending on experiment sampling rate, data
integration period, and scan duration

Electron beam

Photon beam

ition stability: a few % beam size,S
Angular stability: a few % beam divergence,
sub-

e Higher intensity, brightness

* Smaller beam size & divergence

e Higher coherent fraction

* Large data acquisition range (us-hrs)
* Faster detector (kHz-MHz)

* Higher energy resolution

andwidth feedback: days to k
Beam size stability: a few %

* Emittance stability: a few %

e Energy stability

*Bob Hettel, Beam stability at light sources (invited), Review of Scientific Instruments 73, 1396 (2002);
*Christoph Steier, Beam Stability Requirements for 4th Generation Synchrotron Light Sources Based on MBA Lattices, BES LSs
stability workshop2018
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B Beam motion caused beam emittance growth

Fast motion: larger than the sampling and integration rates

beam distribution “smeared out” in phase space, increase of effective beam
emittance: Ac/g.rr = Ecen/ &0
30% beam size motion—=> 10% &, increase

Slow motion: comparable or less than user data integration rates

effective emittance: Ac/e.rf = 2+/&cen/ &0
5% beam size motion—> 10% &5 increase

More serious for users: beam movement based on scan or sample, introducing
measurement noise
Sensitive frequencies motion: bounded high end by data sampling rates and low

end by data integration and sample scan times T X’

Ecen \

. €0 K

€y: unperturbed emittance — X

. . . 1

€..n: DEam centroid motion emittance /
€. . effective emittance 2/
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B Importance of high beam stability: nanoprobe imaging

xBPM2 xBPM1 Hor. Focusing Mirror FEXBPM  eBPM
z=94m X 2=32.6 =16m  z=-15m

(AVAV)
Nano Optics Secondary Source Aperture High resolution Double
z=109m 7=94.4m Crystal Monochromator
z=30.42m

« Hard X-ray Nanoprobe (HXN): provide x-ray imaging
capabilities with ~10 nm spatial resolution for nano-

scale material characterization Impact of feedbacks on Hard x-ray imaging

- Stability requirements 0.700
. A . e 0.90

 Position stability is less sensitive with significant source 0.675
demagnification (3000X for HXN) A 0.88
« Angular stability is critical and limits the resolution of 0.625 o8
differential phase contract imaging 0.84

0.600
« Require motion at sample (1 nm, <10% of focus size) 0.82
from beam angle ~ 100 -10 nrad 0.575 0.80

- Motion sources: electron beam motion, optics
cooling, floor relative drifts, thermal drift. Cause ~200 Feedback off Feedback on
nrad angular motion

- Measures: PLFB (Photon Local feedback) and active NSLS-II: Yong Chu, Xiaojing Huang
beamline components feedback on xBPMs to
maintain long-term drift within 20 nrad
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. Importance of high beam stability: scattering and spectroscopy

ErusrT

» Soft Inelastic X-ray Scattering (SIX): study electronic excitations RIXS to detect thin film spin excitation
with ultrahigh energy resolution (10 meV@1 keV photon energy)
and continuous photon energy tunability using resonant inelastic
x-ray scattering (RIXS)

50 Fe, 54 u.c.

[0,0,L]

4+
4]
T

» Stability requirements: gratings and exit slit together select the [0.0,0.52]

desired energy bandwidth

L L L L — [} 1 L ! 1 L I 1

* Exit Slit vertical aperture determines the energy resolution and
limits beam stability: 5 um vertical aperture for 10° resolution

* Require sub-um beam stability at slit (<10%)

4]
[=]

23 meV energy
resolution

Intensity (a.u.)

\/

n
[+ ]

[0,0,0.23]

* Motion sources: cooling water on mirror, ¥~20 um movement at
. 0
slits

1 1 1 (] 1 ]
200
Energy loss (meV)

*J. Pelliciari et al., Nat .Mat. 20, 188 (2021)
* Lack of non-invasive photon position monitor for soft x-Ray NSLS-1I: Valentina Bisogni, Jonathan Pelliciari |

* Measures: improve noise sources



B Importance of high beam stability: Coherent Scattering

S, S;
48.0 34.3m _
" - S, So IVU20
Ay — - ‘\\Q 29.9m 20.5m Om
i i nsfocator g ' ——
Coherent scattering xBPM A

Time-resolved intensity
correlation function
* Coherent Hard X-ray Scattering (CHX): study nano-scale dynamics in o Feedback off
materials using x-ray photon correlation spectroscopy with hard x-ray e
coherent flux (time-resolved coherent scattering of non-stationary,
non-equilibrium dynamics via 2-time correlation function) e \fyﬁ&

&

 Stability requirements 1.06

* Require beam angular stability <50 nrad at sample position

* Require short to long term stability, 0.1 ms to 6 hr (upto 9 kHz sampling T [s]
rate) 21 s in the future ( Feedback on*

QO
~

* Motion sources: electron beam motion, cooling water and cryo- 0.8

cooling on monochromator, thermal drift

©
»

tage = Atage [s]
e 32x01
® 49401

* Measures: ID BPM local feedback and active beamline components
feedback to reach short- and long-term photon stability <10% & ety
aperture size M i

[92(tage, T)-1V/B
o
[e)]

©
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o
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NSLS-II: Lutz Wiegart, Andrei Fluerasu

gj:::c‘;f BROOKHRVEN 9 Nati *M. Torres Arango et al. / Materials [
Today Physics 14 (2020) 100220
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Means to reach high beam
stability

e Sources perturbing beam stability
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3 Sources perturbing beam stability

Sources of perturbation: natural + cultural noise

Long term (weeks - years)
* Ground settlement
* Seasonal ground motion

Medium term (minutes - days)
* Daily thermal cycle
* Earth’s tides (~12 hrs)

* Beam intensity/fill pattern L

Short term (milliseconds - seconds)
* Ocean waves (0.13 Hz), wind
* Ground vibration due to traffic/trains
* Rotating machinery (cooling water/AC)
* Power supply (PS) noise
* |ID gap variation

High frequency (sub-milliseconds)
* Synchrotron oscillation
* Injection transients
* Beam instabilities

Measures to improve beam stability
* Building design
* Girder — mechanical design
* Advances in PS stability
* Advances in BPM and feedback systems

U.S. DEPARTMENT OF
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b g
B Site selection and building design

« Quiet site selection: the first line defense
Cross-section of the Sirius building*: 11 nm, (2-450) Hz

Natural soil

« Proximity of highway, railroad, industrial complex

Rubber pad

Ocean (NSLS-II, 15 km from Atlantic Ocean shoreline)
Not always possible to select site

 Building design: minimize noise effect
Isolation of base structure

Vehicle tunnel/utility tunnel: sensitive to 1 .
Soil-cement
outdoor/tunnel temperature

« Vibrating equipment: water pump/motor motion Natural soil

reduction, isolation from SR tunnel

. . ' . Quietest site
Overview of measured sites ground vibration (1- Built on firm rock

Night [nm] 9.1

4.1 102

Day [nm] 42 11 80 70 137.2 9 7.4 444

https://vibration.desy-de/overview

*https://www.tandfonline.com/doi/full/10.1080/08940886.2019.1654828 National Synchrotron Light Source 11 Il
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Girder support systems

Environment motion passes to beam motion through
Girder

Easy installation and precision alignment of magnets

High mechanical stability (vibration and thermal)
* Vibration stability: damp motion

* Thermal stability: minimize temperature induced
distortion

Different designs, different support points and various
alignment mechanisms

NSLS-II

|
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B Girder support systems: Vibrational stability requirements

Low transmissibility ratio = High stiffness and rigidity
Lowest Natural Frequency of magnet-girder assembly
50 Hz (ESRF), 54 Hz (HEPS), 110 Hz (Spring-8-I1), 120 Hz (SIRISU)

Uncorrelated motion: magnet to magnet (on the

same girder)

RMS(nm): 25, 150 (V, H) (NSLS-I1), 10 (APSU)

Uncorrelation motion: girder to girder

RMS(nm): 70, 600 (V, H) (NSLS-II), 20 (APSU)

Transm|33|b|l|ty Ratios (Floor-to-Magnet, 1,2 -100 Hz)

Freq.

NSLS-II*
TPS (locked)
ESRF
APSU**
SIRIUS
SPring-8-11***

30 Hz
44 Hz
42 Hz
42 Hz
133 Hz
27 Hz

1.03
1.20
1.24
1.30
1.30
3-5

1.01
1.01
1.21
1.01
1.07
2

100 3

q -
—0.005
0.01

9 I
= 10 4 1 0.05
e
3\ 0.1
= 0.2
=
5 17
é f
2] suff Soft
s { System System
— -— —_—
0.1 T T T T T !
0 0.5 1 1.5 2 25 3
®/My
Y(HT
m

T

A1)

; %C

Transmissibility Ratio = Y/X

S. Sharma: Storage Ring Girder Issues for Low
Emittance Storage Rings, MEDSI, 2019

*With viscoelastic pads, ** Estimates from FE Model, ***Measurements to be verified

SN v ey |

“-=chrotron Light Source 11 |l



B Girder support systems: thermal stability requirements

* Thermal stability: minimize temperature induced distortion

* Viscoelastic pad (NSLS-II): allow relative drift
* Girder expand without bending

* Tunnel air temperature stability: girder thermal bending

* 0.1°C 2 4 nm magnet misalignment

* Floor expansion/contraction: girder deformation
* 1 um/m—> 7 nm deformation (viscoelastic pad)

Viscoelastic pad design (NSLS-1I, S. Sharma)

Alignment
Stud

1.5” Top Steel Plate

0.01” Viscoelastic Film

1” Bottom Steel Plate
1” Steel Plate for Grout
Grout

U.S. DEPARTMENT OF Or-ﬁ‘
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Magnets stability:
25 nm (NSLS-1l, 24 hrs)

BPM stability
0.2 um (NSLS-11, 24 hours)
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B Thermal stability and Power Supply stability

Thermal Sources
* Qutdoor temperature variation Effects
* Tunnel air temperature

* Temporal: £0.1 °C < 1 Hour cycle (NSLS-II, ESRF, SIRIUS, * Girder

APS-U, ALS-U)

* Spatial: 0.1 °C/m, 1 °C entire tunnel (NSLS-11) * Magnet
* Cooling water temperature -

« DI-Cu (+0.1°C), DI - Al (+0.05) °C (NSLS-I1) :1/,\
* Heating from synchrotron radiation/impedance e BPM
« Beam intensity and filling pattern * Mechanical motion (Invar support)

. * Electronics stability

* Electronic rack temperature

* Water cooled, 0.1 °C (NSLS-I1)

Power Supply stability ;

* Magnet power supplies stability directly affects electron « Beam orbit/circumference
beam motion
* Feedback

* Dipole: first order effect. 15 ppm (NSLS-11) 10 ppm (HEPS)

* Quadrupole, sextupole: high order effects. 50/100 ppm
(NSLS-II), 10/100 ppm (HEPS), 10-50 ppm (ESRF-EBS)

U.S. DEPARTMENT OF

Office of
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B ESRF-EBS: high beam stability from machine design

* New girder design: optimize girder rigidity to minimize the vibration effects
* High stability power supplies: accuracy from 10 to 50 ppm (p2p)

* Without Feedback, EBS the integral motion improved by a factor of ~10 (vs ESRF): ~¥300 nm in
both plane, which is better than many 3" generation light sources with FOFB

* FOFB further suppresses beam motion to ~200 nm

old ring 2010, FOC On & Off EBS ring 2020, FOC On & Off
4 - - - - — 0.40 e —
e Voff
3.5 ;
Hoff
- 3 030
5 =
a 2.5 = Hon
w w
o o
[=]
2 2 E 0.20
G 1.5 5 Von
= 0.10
0.5 |
o i _ _ _ Hz 000 £
9 = - - . T 0 50 100 150 200 250 300

THE ORBIT CORRECTION SCHEME OF THE NEW EBS OF THE ESRF

Nai EBS: Kees-Bertus SCHEIDT B

E. Plouviez ', F. Uberto., ESRF. Grenoble, France



® Mechanical motion measurement tools

* Short term stability measurement Floor (horizontal)
* Geophone/accelerometer

* Long term stability

. fDIrift between accelerator and experimental
oor

* SLS: support, positioning and position
monitoring system

* APSU: mechanical motion measurement system
(MMS) monitoring RF-BPM and X-BPM
mechanical movement relative to
floor/reference surface with hydrostatic Level o
System, ~10 nm resolution. Plan to be used for Cell Number 0 45
slow drift correction

=
—
w S
[

.&"52-2 Hz
(a) Cell 26

ra

vPSD [um/+/ He|

Frequency [Hz]

Geophone for vibration measurement

Capacitive system
User

X-Ray
BFM

Insertion Device

Capacitve Sensor
and mounting
assembly

Capacltive Sensor
and mountlng
assembly

Capacitive Sensor
! and mountmg
assembly

Capachive Sensor
and mwmung
agsembly

Invar Rod

Hyarostems
H20 Leve|

mvar Rod
mvar Rod

To power supply To powersupply & Ta power supply To power supply

and amplifier and amplifier and amplifier D and amplifier
EH
i
£
rid

horizontal Storage Ring Concrete Floor User Hall Concrete Floor
positioning system

girder body

Hyarostatc
H20 Lewvel

hydrostatic
levelling system

.di...“‘
‘\_ -~
HPS

SLS: Positioning and monitoring system APSU: Mechanical Motion Measurement system

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B3FEDAOD18093EE07152B59A11AB2645?d0i=10.1.1.616.5421&rep=repl1&type=pdf
Beam Diagnostics for the APS MBA Upgrade (cern.ch)



https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B3FEDA0D18093EE07152B59A11AB2645?doi=10.1.1.616.5421&rep=rep1&type=pdf
https://accelconf.web.cern.ch/ipac2018/papers/tuzgbd3.pdf#search=%20domain%3Daccelconf%2Eweb%2Ecern%2Ech%20%20%2Bauthor%3A%22sereno%22%20%20url%3Aaccelconf%2Fipac2018%20FileExtension%3Dpdf%20%2Durl%3Aabstract%20%2Durl%3Aaccelconf%2Fjacow

) Sources motion propagation to orbit motion

X_ | Xy

* Orbit motion is produced from mechanical
motion of magnets, electrical noise in magnet
power supplies to vibrate magnetic field and
BPM noise via orbit feedback

* Close orbit distortion

) Z 0 ,,3( ¥ cos(mv — |¥(s) — ¥|)
X\S) = ; S)pP; -
7 g g 2sinmy y Noise propagation to orbit motion

o

* Orbit response matrix x = RO: sources <>
beam motion

X: beam position

% [m]
[ T
! - 1 ' :

0: kick angle 0 2 0 50 0 00 120
R: response matrix : Sriine
/ﬁiﬁj Noise propagation to frequency domain
Rij = -————cos(nv — |¥; = ¥}]) _ bt
2 sin v e TN I ’
* Principles of Orbit Feedback and Noise locator ™ |}/ |-.24)

0 =R 1x
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Means to reach high beam
stability

* Diagnostics monitoring beam stability
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B RF Beam Position Monitors evolution

1980s Analog signal

1990s  Digital signal

2000s Digital & FPGA

Now Fastspeed and big memory
Resolution, stability*

Tremendous progress on BPM function and resolution improvement

100 um (single channel process ->
4-button multiplexed processor)

Seconds to get orbit

~Hz, ~1 kHz, TBT (100s kHz)
~30 (long term)/25/500 pum (APS

early)

~Hz, ~10 kHz, TBT (100s kHz)
~3 (long term)/0.2 /3 um (SOLEIL)

~Hz, 10 kHz, TBT, Gated/BbB, X/Y/S (NSLS-I)
<0.1 (long term)/0.1/1 um (TPS)/ 5 um

BPM signals evolve from analog to fast digital
BPM resolution improves ~one order per decade, 100 um to 100 nm (follow beam emittance trend), in “Hz to ~10
kHz fast data to TBT 100s kHz
Electronics development (AFE and DFE) to improve BPM resolution, stability, data process speed and size

APSU RF BPM button and
Libera Brilliance+ electronics

MBA 48 bunches| 200mA
70ps,21mm (18 34nt
Gaussian

nnnnnnnn

557316l _elecirode
N D.0a54W

Design/improvement of BPMs from in-house development (SIRUIS, NSLS-11...) and commercial products (Bergoz,

Instrumentation Technologies) in parallel

U.S. DEPARTMENT OF Of‘ﬁce Of

EN ERGY Science

NATIONAL LABORATORY

* Refer G. Rehm'’s talk: Review of BPM Drift Compensation Schemes, Monday
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g Efforts to improve BPMs stability

4 Days of 10 Hz Orbit Data

* BPMs stability limit feedback performance: must be E L
better than orbit stability requirements ;Z
* BPM electronics improvements E:’ T T 1
* High stable temp. control racks: +/- 0.1 °C (1-3 um/°C) UJ pno?mnec;r:]pensatlignOn ) \ ISU PotTone Comp. Of ai, ) X
* Pilot tone controller (PTC) for BPM electronics self- B ALS: 0.2 um |Ong te’:r‘m Stabl|lty W|tthTC ’
calibration (ALS) _ - ”

* RF switching: <50 nm stability (Libera B+, Sirius)
* New electronics: zBPM in NSLS-II

* Mechanical motion:

* High stability BPM support to isolate ground motion:
Invar, Granite

* Mechanical motion monitoring: Hydrostatic level

& Lo0
1—, Vs BPM
l— F':'Mw:h'-v.r..n

NSLS-1I: zZBPM new eIectronlcs

BPM Electronics Long-term Stability

Photon

. E .
E =
‘" { g 200 )
9 9 0] L ] :
|.. T -- 00 " | ' l l: 1
{ “800 - - A :
‘ Storaga Rln; Concrete Floor | ° . N e -
APSU Invar and granlte support on BPMs BPM electronics long term stability: 130 nm—> 10 nm
http://accelconf.web.cern.ch/ibic2020/talks/frao03 talk.pdf (BPM v ZBPM)
https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES_Workshop_NSLS-II__2018-2_Padrazo.pdf ht S[]U rce H .

https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES Workshop NSLS-Il  2018-2 Padrazo.pdf



http://accelconf.web.cern.ch/ibic2020/talks/frao03_talk.pdf
https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES_Workshop_NSLS-II__2018-2_Padrazo.pdf

® Photon BPM

* Monitor photon beam stability, located at the front end or beamline (10s-100
m from source)

* Sensitive to beam angle stability: a factor of 10 times higher than RF BPMs

* Most sensitive knobs to control photon beam position at beamlines
* Electronics: similar as RF BPMs, easy to accommodate into e-beam feedback
 ~0.2 um long term stability

* Used for hard x-rays, position-photon energy dependence. Difficult for soft-x-
ray (R&D) or VUV

o

NSLS-1l blades photon BPM - :uh.. -
APSU Grid photon BPM
Office of BRO

Scne e, 23 National Synchrotron Light Source 11 il
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) BPMs data for stability monitor

 BPM 10 Hz data x, y, intensity: long term NSLS-Il live beam motion spectrum
beam orbit drift (secs to days%, low X Plane: ID

frequency spectrum (<10 Hz), precise g N
beam lifetime measurement ., “ i
« BPM 10 kHz data x, y: short term beam fe: oz 3
stability (ms to secs), noise locator, fast 01 §
feedback, high frequency spectrum (Hz 1e208es : >
to kHz), daily track machine e
performance Pe:k Freq (Hz) Amp (um~2/Hz) Frequencyfr rangenf;r 5:eak5
. e P 51.6 0.01e6 start freq . z
* BPM TBT data: beam instability, beam 60.0 0.016 end freq[1560.0 Hz
dynamics,  injection  optimization, - EX 0013 _ prominence [0.002_ um
collective effect study, beam local lost, . 0008 '
feedback etc. —
BPM output data S, s §
. v Fo=117300MHz : ._:: 3252 E o %
AR | rev=378.55 kHz T g - _ - E
- D C 1/310 i i ;r:‘Tl]lnt]I_u |II|_‘w__.|I_|‘|“1|:lhr e D_-J 1 10 o0 1000 4930?:‘;’”1
'|’-_|-'_1n;: studies R e IR )
9.96 kHz e i |—‘—ﬂUErﬂuEU * PO - e P2 L] |-".H—|ru.~gr.u| |
1/38 r FA, used for fast orbit Peak Freq (Hz) Amp (um~2/Hz) Frequency range for 5 peaks
i feedback, active interlock etc. PO 60.0 0.042 start freq| 0.1 Hz
< = 51.6 0.016 end freq|1500.0 H=z
1/38k oo > SA, for orbit display and correction P2 71.3 0.013 prominence | 0.001 um
60.6 0.009 Peak distance| 0.5 Hz
P4 70.5 0.007

U.5. DEPARTMENT OF Offi il . .
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J) BPM data: improve beam stability from sources

Cooling fan

SN(())Ii_se”_locator: pinpoint motion sources and improve them at
E

|dentify orbit spectrum peaks frequency: 46/50/54/128 Hz

Localization method to identify the noise sources: cooling fan in

kickers, FCT and shaker
Technical solutions: reposition fans

The integrated noise spectrum improved by a factor of 2 in both

planes.

Beam spectrum before and after noise suppression

—BPhs 20mA FOFE OM 4guart Fans OM.mat
——BPMs 20mA FOFE ON 4guart Kicker OFF FCT OFF shaker OFF. mat

n

10°

Shgker +_;
Kickers

«—FCT—4 | Horizontal

] | ] | | |
o 20 40 &0 80 100 120 140 160
fire cv (Hz)

T
- —BPMs 20mA FOFB ONM dquart Fans ON.mat :
chkers —BPMSs 20mA FOFB OGN aquart Kicker OFF FCT OFF shaker OFF. mat |

10° i : E
o Shaker + FCT Vertical 1

Kickers <4

3
= (1] 20 40 &0 80 100 120 140 160

U.S. DEPARTMENT OF Orﬁce Of I‘.' N
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https://accelconf.web.cern.ch/DIP
AC2011/papers/tupd78.pdf
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Means to reach high beam
stability

* Feedbacks increasing beam stability
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B Feedbacks: Fast Orbit Feedback

* Feedback system: further improve beam stability

* Light sources mostly use global orbit feedbacks based on SVD algorithm
* Slow corrector: strong kick (mrad). Limited bandwidth, DC to ~Hz
* Fast correctors: weak kick (10s prad). ~kHz correction rate and bandwidth, DC to 100s Hz

e NSLS-II fast orbit feedback (FOFB)
* 30*[6-10] BPMs: 10 kHz sampling
* 30*3 FC: 10 kHz sampling

e Fast FOFB correction cycle for large bandwidth
* FPGA based parallel process Cell Controller and SDI link:

NSLS-II FOFB topology

C}

£-,

High-speed calculation and fast data delivery

LT
:
i
g
.
.
r

m-z

Receive local BPM data
Transfer/receive BPM data in other cells
Carry FOFB calculation

Transfer PSs setpoints to PSC

cC PSC + PSI —  Regulator + PS
Magnets +
BPM Electron Beam Chambers

Diagram of FOFB system

NSLS-II: Yuke Tian, Kiman Ha, Lihua Yu

U.S. DEPARTMENT OF

EN ERGY Science

Office of BROOKHIAVEN

NATIONAL LABORATORY
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Machine Protection
Cell Controller
BPM

5 Gbps Local fiber link
5 Gbps Remote fiber link {

100 Mbps PS link S
Fast corrector controller
Slow corrector controller
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B Feedbacks: NSLS-II Fast Orbit Feedback

dgofden C 9
o - Jag—{x}
.my
d f ..’ .“ \
3 AcEeIeraTtor 3 \
. / } ,’R'UZV : output matrix
Sg:{‘:'s' ”:.‘;de individule mode ayus?
. UE” 9 . compensation
Individual eigenmode control

* Individual eigenmode compensation |
* Control each eigenmode with a different
controller with different compensation Vi
in the frequency domain |

0 =VitUTx v, ?}

d+e
’ X )
NN
B ,
Oact = Q(2)0 UZT. @ ) @ _|_>__
&)

0,
X
0,
X
* (Q(2): control individual mode compensation | |
and change gain Vy @ On_,
* Gain and bandwidth: represent FOFB UyT
performance to suppress motion—=> high gain,
large bandwidth

NSLS-1l Fast Orbit Feedback with Individual Eigenmode Compensation (cern.ch)
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J Feedbacks: NSLS-II Fast Orbit Feedback (CONT.)

Efforts to improve FOFB gain and bandwidth
* Reduced BPMs delay by 100 us
* Increased cell controllers update rate to 10 kHz
* FOFB loop total latency: 220 us

Bandwidth increase from 250 Hz to 400 Hz
(horizontal) and 300 Hz (vertical)

Gain increased by 10 dB (3 times) and integrated
PSD motion reduced by 30% (at 500 Hz)

Typical ID source position/angle integrated motion
[1-500 Hz]: 0.6% (H) and 7% (V)

FOFB only: accumulated in a week, ~half of full
strength. Not sufficient to maintain long term drift
(90 FCs*200+ BPMs)

Measures: unified orbit feedback on ID BPM/xBPM
and interact with FOFB (APS/ALS/SOLEIL) to reach
um long term stability

NSLS-11: Sukho Kongtawong

Sukho Kongtawong, Recent improvements in beam orbit
feedback at NSLS-1I, NIMA 976 (2020) 164250
®ENERGY

Office of
Science

NATIONAL LABORATORY

Before

After

FOFB stage-to-stage latency and improvements

PS + vacuum Cell
chamber + magnet BPM PSC+PSI =
controller
+ electron beam
\ ]\ J \ ) ;'_j
T T T
70-80 us 115 us 10kHz  135us 5kHz 15-30 us
70-80 us 1520 us 10kHz 105 s 10kHz  15-30 us

ID source position stability feedback ON/OFF

400 |
= ' FOFB ON |
= 300} - FOFB OFF
>
§ 200 -
=
oo
Z 100] H plane
- 1T

o &= A
10° 10° 10°
E e it vimmmma s FLI=1
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-

=.100

2 V plane
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B Feedbacks: Slow and Fast correction combination

Slow and fast orbit feedback systems are not compatible in a common frequency domain

I: FOFB with Download (steps in red)

Il. FOFB/SOFB interaction: orbit communication between 2 systems (steps in black)

lll. FOFB/SOFB interaction and download*: achieve short- and long-term stability at all source points
(SOLEIL) (all steps)

SOFB iteration at SOLEIL with 2 independent sets of correctors

« Step 1 (same as before):
— Read the orbit error AU and calculated the new slow correctors setting

SOLEIL: Nicolas Hubert, Laurent Nadolski

Begin: 2009-04-07 06:20.00.0, End: 2009-04-07 16:20:00.0

Al gy, to correct it: =
- |
Algopg = Rsopg * AU - 8 um :
* Step 2 § 10 .
— Calculate the new slow correctors setting in order to cancel the DC current g . g
part in the fast correctors (downloading process): £ -
AlZgopg = R-130FB *Reors * Alrors . ,F‘DFB OEIV\; — FOFB + SOFB S
+ Step 3 (same as before): s

07:00 08:00 09:00 10:00 1100 1200 13:00 14:00 15:00 16:00

— Predict the orbit movement AW that would be done by applying the previous
setting: Vertical beam position at one SOLEIL bending magnet

_ " source point (BPMs: grey and X-BPMs: orange and green
AW = Rsors * Altsors point (BPs: grey geand green)

« Step4: {
- Apply the new setting to the slow correctors Al = Al gopg + Al25 05
— Subtract the predicted movement AW from the FOFB reference orbit

*Global Orbit Feedback Systems Down to Dc Using Fast and Slow
Correctors, DIPAC 2009, Nicolas HUBERT

U.S. DEPARTMENT OF Orﬁce of nn mﬁ
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B Slow and Fast orbit feedback: NSLS-I|

* UOFB: unify normal operation feedbacks, slow orbit feedback (SOFB), fast orbit
feedback (FOFB), and RF frequency feedback (RFFB) into one feedback

* Include 180*2 DC, 90*2 fast correctors, RF frequency and 224*2 RF BPMs and
3*2 X BPMs in feedback

* Be flexible to adjust ID bump, BM bump and X BPM photon local bumps at any
time

* Maintain beam long-term orbit stability for all beamlines within in ~pm

ID sources long term position/angle stability

0.010

Bump Offset [mm) & Angle [mrad]
0.000

0,010

2022-07-09 o7i11 o713 07-15

0.010

Bump Offsat [mm] & Angla [mrad)
0.000

0010

UOFB

Zo22-07-19 o721 ' 0723 o72s

Y. Hidaka, UNIFIED ORBIT FEEDBACK AT NSLS-II , NAPAC22 National Synchmtron |_|ght Source Il IR



® Feedbacks: ID feed-forward correction

* Field integral of ID varies with gap and phase
* Electron and photon beam position and angular displacement

* Compensation methods: FF correction using local compensation scheme with SR correctors

* |: Correct motion using electron BPMs, ~ um accuracy. Good for electron beam stability, but miss
the undulator steering on photon beam

* |I: Include beamline photon BPM to correct ID’s position & angle. Sub-urad photon stability (SLS*)

* |D other effects : optics (coupling, tune, beta), DA
ID local compensation with electron BPM and photon BPM

upstream (u) downstream (d)

FEPM

¢||“ 912

——+— FBPM

ol = |
T B2 912 22 SLS: J. Chrin

W W A E
A C A C

L 1.2

- —

L3 /!
!

*J. Chrin etc. Local correction schemes to counteract insertion device effects, NIMA 592 (2008) 141-153
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B Feedbacks: Active beamline components feedback

Fast mono beam “angle” feedback

using mono pitch and roll
DBPM DBPM

1Z=94m z=64.5my;
N[ 

ID
Nano Optics SSA — - HFM HDCM

z=109m z=94.4m . 7=326m  2=30.42m
Slow mono beam “position” feedback NSLS-1i: Yong Chu, Xiaojing

for stable beam intensity through SSA Huang, Petr llinski

* Knobs: mono crystal Pitch & Roll (100 Angular Stability with feedback OFF/ON
Hz), mirror Pitch (5 Hz)

1000 T | T T 200 | T T T

* Objects: Dimond BPMs Feedback off ol Feedback on

500 - E
100

T E

* Reach high photon beam
position/intensity (SSA) and angle
stability

=1

0

* Limited bandwidth using optical
components (mirror, mono-crystals
etc) to correct photon beam motion

500 -

-50

Beam Angle [nrad]

41000 | | | | | | -100 L L L L
0 200 400 600 800 1000 1200 0 50 100 150 200

Time (s) Time (s)

*Petr llinski , Active feedback implementation for beamline photon beam stability, 7th DLSR 2021 14l Sy nchrotron Li g ht Source 1] W



B Diamond: kHz feedback using beamline xBPM

* A new feedback system: control electron beam to keep beam stability at X-ray BPM, close to
beamline sample point

e Correct photon beam motion from electron beam and beamline optics
* Using SR four fast correctors for transparent bump correction

* Maintain X-ray beam stability to <3% of a beam size with bandwidth >1kHz .
Diamond: C. Bloomer

Layout of the beamline and source point Feedbacks impacts on X-ray BPM

Storage ring Optics hutches Experimental hutch
— N - = o
- El g g E; = 2 €3 s |[- No feedback
28 =58 £2 i M 22 E
38 E% &R a s, g8 & =~ ity
§E E8 &5 = - FOFE +P=5.0 :
ad Gd f T FOFB +P=10.0 : ik
M N E_ FOFB +P=150 ¢
- L el (e
__ I Z T sk S
] N = v} § 1] A R “_',j'
N .‘ = E . 4 £ ¥ By
S = | i ="
23 ] Ear ety
g T Ve s
3-8 5 : i
3Im | 3im T % : f flr"
—F i : A7)
3.6m 1.6m == B - A
| % [} : o /
30.8m 21F : i g
- Sl
50.0m 3 b L
4 . = caanysprmeesatiett ==
185.0m S S S T
- " 3 1 L |
A 10° 10 102 102 10

C. Bloomer, fast feedback using electron beam steering on beamline x-Ray BPM, IBIC2019, p172-176
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List of feedback systems in light sources

Feedback type BPM sampling rate [kHz] Bandwidth [Hz] _

ALBA

APS
APSU*
BESSY I

CLS
DIAMOND
ELETTRA
ESRF-EBS
HEPS*
MAX IV
NSLS-II
PETRA 111
PLS
SIRIUS
SLS
SOLARIS
SOLEIL
SPEAR3

SSRF
TPS

Slow + Fast
Fast

Slow + Fast
Slow+ Fast

Fast

Slow

Fast

Fast
Slow+ Fast
Slow+ Fast
Slow+ Fast
Slow+ Fast
Slow+ Fast
Fast

Fast

Fast
SOFB+ FOFB
Slow+ Fast
Fast

Slow+ Fast
Fast

1.16
22.6
2.4

10
10
10
22
10
10
10

25

10

10
10

100

80
1000 Demonstrated
40

45

130

150

500

500-1000
2/5% w/o FOFB

400

200

100

1000

100

200

100

100 *Fast feedback systems

not in operation
300 b



) r -
B Unified feedback system

* Increasing position/angular stability requirements: important to feedback on beamline components

* Limitation on electron BPM resolution
* Mechanical/thermal instability causes relative ground motion of experiments with respect to accelerator

floor
* Ground motion, ‘ATL law’ : relative ground motion of 2 points separated by distance L after time T:
Xz grouna = ATL = long term photon source stability* (Vadim Sajaev)

* A unified electron orbit/photon trajectory feedback system needed to stabilize beam at the
sample—B. Hettel (advocated many years ago)

“Stray Radiation” &
Dipole Fan

= E 3 '.l: L2l
B S L L

APSU: N. Sereno, J. Carwardine,
P. Kallakuri , M. Borland

*Predicting orbit motion for the APS Upgrade storage ring, Vadim Sajaev, 7th-dlsr-2021 National Synchrotron Light Source II Il



B APS-U: 1 kHz large bandwidth orbit feedback

Require <10% beam size/divergence stability (0.01-1000 Hz)

Expand feedback bandwidth/minimize latency:
* BPM higher sampling rate: 271 kHz TBT data

* Faster correctors: 22.6 kHz sampling rate, 10 kHz bandwidth

* Lower processing latency to 44.2 us

Unified feedback algorithm: combines fast and slow

correctors without compromising spatial or dynamical

Feedback

Feedback communication latencies

_ Feedback

performance
Demonstrated APS-U fast feedback on APS with 1 kHz
bandwidth
W L | Y T T LBALAAY | | '- LR | T """II T ]
= Open loop Horizontal I
e Closed loop with Ki = 0.3 I
i Closed loop with hPID2 = g
[ |
I . |
e’ S27B:POX > i
2 e [
= e L o |
g - 1.7 pm
2 0 & x rrrr PR | R | PR e | =
0.01 01 1 Frequer.]lgy (Hz2) 100 1000 10000
" ; . - ; ; T —
E oL Open loop Vertical M oot 1
o Closed loop Ki= 0.3 HE P |
—_ Closed loop vPID2 [ |
= 15 F | 1
w J |
s h L S28A:POY ! 1
S : /' 0.58 um [
= 05 5
= { bt g 0.37 um
@ 0Lk, .— —_—
0.01 0.1 1 10 100 1000 10000

Frequency (Hz)

Cycle Clock ~ 44.2ps " Cycle Clock
Turn-by-turn BPM Data from Libera Brilliance +
A 0 0 0 0 0 0 0 0 000 K810
DMA BPM Data to DSPs Stage 2: 16 BPMs x 8 Correctors
Inverse Response Matrix (16x8x2)
Regulator (x 16)
E Copy Setpoints to FPGA
— 12.4}]5 —)
(measured) Transmitnew setpoints (APSU prototype)
II (FPGA -> Gig-E switch -> Power Supplies)
i 6.0 Housekeeping
e ~18.5s N
(measured)
Unified algorithm
N
IRM is re-formulated to
= remove the common vector
= o sub-space
g orrectors M—
=
B &~ RTFB corrects
|
& ! down to DC and
1 N
| | Fast Correctiors uses all spatial
J modes
Frequency domain
APSU: N. Sereno, J. Carwardine,

P. Kallakuri, M. Borland



B Summary and outlook

 New synchrotron light sources approach diffraction limit emittance, lower
by two order magnitude with smaller beam size

* Tighter tolerance on beam spatial and time domain stability from high-
performance beamlines

* Our community invented and continue to develop different means and

methods to advance beam stability
* Investing in facility construction early in attempt to reduce the environmental
noise sources
* Improvements in stabilization of accelerator components: BPMs (speed and
resolution), Power Supply (stability and controls)
* Advances in Feedbacks (FOFB, photon feedback)
* Towards the future, unified feedback system is the trend to stabilize both

electron and photon beam motion in a larger bandwidth

Office of ; 2 . -
S National Synchrotron Light Source 11 Il
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Thanks for your attention!

Contact: gwang@bnl.gov
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B Feedbacks: Noise locator

Pin-point the motion source's potential location
* Analyze individual BPM (10 kHz) spectrum with FFT to get amplitude and phase components
* Extract single frequency motion at all BPMs
* Pseudo AC orbit correction to get efficient corrector strength
* Check the aera of the most efficient correctors + noise frequency
* NSLS-Il implements operation tool for live motion spectrum and noise locator

BPM spectrum amplitude Pseudo AC orbit correction

Horizontal spectrum in f = [55,65] Hz

Horizontal noise in f = [55,65] Hz

«10%
| |
2 4 | x:59.97
Y: 63
155 | z: 2.326e+08

Corrector Kick

frequency (Hz) NSLS-1I: Sukho Kongtawong

BESSY/Diamond: Guenther Rehm
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