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Outline

• Requirements of beam stability

• The means to reach high beam stability

• Sources perturbing beam stability

• Diagnostics monitoring beam stability

• Feedbacks increasing beam stability 

• Summary and outlook 
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Trend of synchrotron light sources: ultra-low emittance
• Emittance reduction by two order magnitude: increasing brightness and 

coherence of photon beam
• Photon users: higher spatial resolution, higher energy resolution and 

faster scan time 
• Beam stability: a crucial parameter to define resolution of experiments

Courtesy: V. Smaluk



• Electron beam stability are driven by photon beam stability requirements
• Phase space stability: 

• 100s – 10s pm-rad emittance: a few µm beam size and beam divergence  
• Tighter beam position/angular stability: submicron

• Time domain stability
• From hours to microseconds, depending on experiment sampling rate, data 

integration period, and scan duration

Beam stability requirements at ultra-low emittance lattice
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*Bob Hettel, Beam stability at light sources (invited), Review of Scientific Instruments 73, 1396 (2002);
*Christoph Steier, Beam Stability Requirements for 4th Generation Synchrotron Light Sources Based on MBA Lattices, BES LSs 
stability workshop2018

• Higher intensity, brightness  
• Smaller beam size & divergence
• Higher coherent fraction
• Large data acquisition range (µs-hrs) 
• Faster detector (kHz-MHz)
• Higher energy resolution  

• Position stability: a few % beam size, sub-µm
• Angular stability: a few % beam divergence, 

sub-µrad
• Large bandwidth feedback: days to kHz 
• Beam size stability: a few % 
• Emittance stability: a few % 
• Energy stability

Photon beam Electron beam 
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• Fast motion: larger than the sampling and integration rates
• beam distribution ‘‘smeared out’’ in phase space, increase of effective beam 

emittance: ⁄∆𝜀𝜀 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = ⁄𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀0
• 30% beam size motion 10% 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 increase 

• Slow motion: comparable or less than user data integration rates 
• effective emittance: ⁄∆𝜀𝜀 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = 2 ⁄𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐 𝜀𝜀0
• 5% beam size motion 10% 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 increase 
• More serious for users: beam movement based on scan or sample, introducing 

measurement noise
• Sensitive frequencies motion: bounded high end by data sampling rates and low 

end by data integration and sample scan times

Beam motion caused beam emittance growth

X

X’

εeff

εcen
ε0ε0: unperturbed emittance

εcen: beam centroid motion emittance
εeff : effective emittance



Importance of high beam stability: nanoprobe imaging
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Impact of feedbacks on Hard x-ray imaging

NSLS-II: Yong Chu, Xiaojing Huang

• Hard X-ray Nanoprobe (HXN): provide x-ray imaging 
capabilities with ~10 nm spatial resolution for nano-
scale material characterization

• Stability requirements
• Position stability is less sensitive with significant source 

demagnification (3000X for HXN)
• Angular stability is critical and limits the resolution of 

differential phase contract imaging 
• Require motion at sample (1 nm, <10% of focus size) 

from beam angle ~ 100 -10 nrad

• Motion sources: electron beam motion, optics 
cooling, floor relative drifts, thermal drift. Cause ~200 
nrad angular motion

• Measures: PLFB (Photon Local feedback) and active 
beamline components feedback on xBPMs to 
maintain long-term drift within 20 nrad

7

Feedback off Feedback on
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• Soft Inelastic X-ray Scattering (SIX): study electronic excitations
with ultrahigh energy resolution (10 meV@1 keV photon energy)
and continuous photon energy tunability using resonant inelastic
x-ray scattering (RIXS)

• Stability requirements: gratings and exit slit together select the
desired energy bandwidth

• Exit Slit vertical aperture determines the energy resolution and
limits beam stability: 5 µm vertical aperture for 105 resolution

• Require sub-µm beam stability at slit (<10%)

• Motion sources: cooling water on mirror, ~20 µm movement at
slits

• Measures: improve noise sources
• Lack of non-invasive photon position monitor for soft x-Ray

*J. Pelliciari et al., Nat .Mat. 20, 188 (2021) 

NSLS-II: Valentina Bisogni, Jonathan Pelliciari 

RIXS to detect thin film spin excitation

23 meV energy 
resolution

Importance of high beam stability: scattering and spectroscopy

55 m
97.6 m

104 m



• Coherent Hard X-ray Scattering (CHX): study nano-scale dynamics in 
materials using x-ray photon correlation spectroscopy with hard x-ray 
coherent flux (time-resolved coherent scattering of non-stationary, 
non-equilibrium dynamics via 2-time correlation function)

• Stability requirements

• Require beam angular stability <50 nrad at sample position 

• Require short to long term stability, 0.1 ms to 6 hr (upto 9 kHz sampling 
rate) 1 µs in the future

• Motion sources: electron beam motion, cooling water and cryo-
cooling on monochromator, thermal drift 

• Measures: ID BPM local feedback  and active beamline components 
feedback to reach short- and long-term photon stability <10% 
aperture size

xBPMCoherent scattering

NSLS-II: Lutz Wiegart, Andrei Fluerasu
*M. Torres Arango et al. / Materials 
Today Physics 14 (2020) 100220

Feedback off

Time-resolved intensity 
correlation function

Feedback on*
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Importance of high beam stability: Coherent Scattering 
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Means to reach high beam 
stability

• Sources perturbing beam stability
• Diagnostics monitoring beam stability
• Feedbacks increasing beam stability 



Sources of perturbation: natural + cultural noise
• Long term (weeks - years) 

• Ground settlement 
• Seasonal ground motion

• Medium term (minutes - days)
• Daily thermal cycle 
• Earth’s tides (~12 hrs)
• Beam intensity/fill pattern

• Short term (milliseconds - seconds) 
• Ocean waves (0.13 Hz), wind 
• Ground vibration due to traffic/trains 
• Rotating machinery (cooling water/AC)  
• Power supply (PS) noise
• ID gap variation

• High frequency (sub-milliseconds)
• Synchrotron oscillation 
• Injection transients 
• Beam instabilities 

• Measures to improve beam stability
• Building design
• Girder – mechanical design 
• Advances in PS stability
• Advances in BPM and feedback systems 
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Site selection and building design 
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Cross-section of the Sirius building*: 11 nm, (2-450) Hz

Reinforced bar joint 

Soil-cement 

Natural soil 

Embankment

Rubber pads 

Floor slabs 

Quietest site 
Built on firm rock

ALBA APS BNL DESY(XFEL) ESRF IHEP SLAC Spring-8 SSRF

Night [nm] 9.1 9.8 29.1 35.1 40.2 8.1 4.1 1.8 102

Day [nm] 42 11 80 70 137.2 9 7.4 2.5 444

https://vibration.desy.de/overview

Overview of measured sites ground vibration (1-
100) Hz 

*https://www.tandfonline.com/doi/full/10.1080/08940886.2019.1654828

• Quiet site selection: the first line defense

• Natural soil

• Proximity of highway, railroad, industrial complex

• Ocean (NSLS-II, 15 km from Atlantic Ocean shoreline) 

• Not always possible to select site   

• Building design: minimize noise effect

• Isolation of base structure 

• Vehicle tunnel/utility tunnel: sensitive to 
outdoor/tunnel temperature

• Vibrating equipment: water pump/motor motion 
reduction, isolation from SR tunnel



• Environment motion passes to beam motion through 
Girder  

• Easy installation and precision alignment of magnets

• High mechanical stability (vibration and thermal) 
• Vibration stability: damp motion
• Thermal stability: minimize temperature induced 

distortion 

• Different designs, different support points and various 
alignment mechanisms

Girder support systems

13

ESRF



Girder support systems: Vibrational stability requirements  
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• Low transmissibility ratio High stiffness and rigidity 
• Lowest Natural Frequency of magnet-girder assembly 

50 Hz (ESRF), 54 Hz (HEPS), 110 Hz (Spring-8-II), 120 Hz (SIRISU)

• Uncorrelated motion: magnet to magnet (on the 
same girder)

RMS(nm): 25, 150 (V, H) (NSLS-II), 10 (APSU) 

• Uncorrelation motion: girder to girder 
RMS(nm): 70, 600 (V, H) (NSLS-II), 20 (APSU) 

S. Sharma: Storage Ring Girder Issues for Low 
Emittance Storage Rings, MEDSI, 2019

*With viscoelastic pads, ** Estimates from FE Model, ***Measurements to be verified



• Thermal stability: minimize temperature induced distortion 
• Viscoelastic pad (NSLS-II): allow relative drift 
• Girder expand without bending

• Tunnel air temperature stability: girder thermal bending
• 0.1 ⁰C  4 nm magnet misalignment

• Floor expansion/contraction: girder deformation
• 1 µm/m 7 nm deformation (viscoelastic pad)

Girder support systems: thermal stability requirements 
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1” Bottom Steel Plate
1” Steel Plate for Grout

1.5” Top Steel Plate

0.01” Viscoelastic Film 

Alignment 
Stud

Grout

Viscoelastic pad design (NSLS-II, S. Sharma)

Magnets stability: 
25 nm (NSLS-II, 24 hrs)

BPM stability
0.2 µm (NSLS-II, 24 hours)



Thermal Sources 
• Outdoor temperature variation 

• Tunnel air temperature 
• Temporal: ±0.1 ⁰C < 1 Hour cycle (NSLS-II, ESRF, SIRIUS, 

APS-U, ALS-U)
• Spatial: ±0.1 ⁰C/m, ±1 ⁰C entire tunnel (NSLS-II)

• Cooling water temperature 
• DI – Cu (±0.1 ⁰C ), DI - Al (±0.05) ⁰C (NSLS-II)

• Heating from synchrotron radiation/impedance 

• Beam intensity and filling pattern

• Electronic rack temperature 
• Water cooled, ±0.1 ⁰C (NSLS-II)

Power Supply stability 
• Magnet power supplies stability directly affects electron 

beam motion

• Dipole: first order effect. 15 ppm (NSLS-II) 10 ppm (HEPS)

• Quadrupole, sextupole: high order effects. 50/100 ppm 
(NSLS-II), 10/100 ppm (HEPS), 10-50 ppm (ESRF-EBS)     

Thermal stability and Power Supply stability  
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Effects  

• Girder

• Magnet

• PS 

• BPM 
• Mechanical motion (Invar support)
• Electronics stability 

• Beam orbit/circumference 
• Feedback 



• New girder design: optimize girder rigidity to minimize the vibration effects 

• High stability power supplies: accuracy from 10 to 50 ppm (p2p)  
• Without Feedback, EBS the integral motion improved by a factor of ~10 (vs ESRF): ~300 nm in 

both plane, which is better than many 3rd generation light sources with FOFB 
• FOFB further suppresses beam motion to ~200 nm

ESRF-EBS: high beam stability from machine design

17 EBS: Kees-Bertus SCHEIDT 

EBS ring 2020, FOC On & Off

Hoff

Voff

Von

Hon



• Short term stability measurement 
• Geophone/accelerometer

• Long term stability
• Drift between accelerator and experimental 

floor
• SLS: support, positioning and position 

monitoring system
• APSU: mechanical motion measurement system

(MMS) monitoring RF-BPM and X-BPM
mechanical movement relative to
floor/reference surface with hydrostatic Level
System, ~10 nm resolution. Plan to be used for
slow drift correction

Mechanical motion measurement tools
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APSU: Mechanical Motion Measurement systemSLS: Positioning and monitoring system

Geophone for vibration measurement

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B3FEDA0D18093EE07152B59A11AB2645?doi=10.1.1.616.5421&rep=rep1&type=pdf
Beam Diagnostics for the APS MBA Upgrade (cern.ch)

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B3FEDA0D18093EE07152B59A11AB2645?doi=10.1.1.616.5421&rep=rep1&type=pdf
https://accelconf.web.cern.ch/ipac2018/papers/tuzgbd3.pdf#search=%20domain%3Daccelconf%2Eweb%2Ecern%2Ech%20%20%2Bauthor%3A%22sereno%22%20%20url%3Aaccelconf%2Fipac2018%20FileExtension%3Dpdf%20%2Durl%3Aabstract%20%2Durl%3Aaccelconf%2Fjacow


Sources motion propagation to orbit motion 
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• Orbit motion is produced from mechanical
motion of magnets, electrical noise in magnet
power supplies to vibrate magnetic field and
BPM noise via orbit feedback

• Close orbit distortion 

𝑥𝑥 𝑠𝑠 = �
𝑗𝑗

𝜃𝜃𝑗𝑗 𝛽𝛽 𝑠𝑠 𝛽𝛽𝑗𝑗
cos(𝜋𝜋𝜋𝜋 − |𝛹𝛹 𝑠𝑠 − 𝛹𝛹𝑗𝑗|)

2 sin𝜋𝜋𝜋𝜋

• Orbit response matrix  𝒙𝒙 = 𝑹𝑹𝑹𝑹: sources 
beam motion 

X: beam position 
𝜃𝜃: kick angle
R: response matrix 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗

2 sin𝜋𝜋𝜋𝜋
cos(𝜋𝜋𝜋𝜋 − |𝛹𝛹𝑖𝑖 − 𝛹𝛹𝑗𝑗|)

• Principles of Orbit Feedback and Noise locator
𝜽𝜽 = 𝑅𝑅−1𝒙𝒙

Noise propagation to orbit motion

𝒙𝒙(𝜔𝜔) 𝜽𝜽(𝜔𝜔)𝑅𝑅−1

Noise propagation to frequency domain
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Means to reach high beam 
stability

• Sources perturbing beam stability
• Diagnostics monitoring beam stability
• Feedbacks increasing beam stability 



RF Beam Position Monitors evolution
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1980s

1990s

2000s

Now

Analog signal

Digital signal

Digital & FPGA

Fast speed and big memory
Resolution, stability*  

100 µm (single channel process ->
4-button multiplexed processor)
Seconds to get orbit 

~Hz,  ~1 kHz, TBT (100s kHz)
~30 (long term)/25/500 µm (APS 
early)

~Hz, 10 kHz, TBT, Gated/BbB, X/Y/S (NSLS-II)   
<0.1 (long term)/0.1/1 µm (TPS)/ 5 µm

~Hz, ~10 kHz, TBT (100s kHz)
~3 (long term)/0.2 /3 µm (SOLEIL)

• Tremendous progress on BPM function and resolution improvement 
• BPM signals evolve from analog to fast digital
• BPM resolution improves ~one order per decade, 100 µm to 100 nm (follow beam emittance trend), in ~Hz to  ~10 

kHz fast data to TBT 100s kHz   
• Electronics development (AFE and DFE) to improve BPM resolution, stability, data process speed and size  

• Design/improvement of BPMs from in-house development (SIRUIS, NSLS-II…) and commercial products (Bergoz, 
Instrumentation Technologies) in parallel   

APSU RF BPM button and 
Libera Brilliance+ electronics

* Refer G. Rehm’s talk:  Review of BPM Drift Compensation Schemes, Monday



Efforts to improve BPMs stability
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• BPMs stability limit feedback performance: must be 
better than orbit stability requirements   

• BPM electronics improvements
• High stable temp. control racks: +/- 0.1 oC (1-3 µm/ oC )
• Pilot tone controller (PTC) for BPM electronics self-

calibration (ALS)
• RF switching: <50 nm stability (Libera B+, Sirius)
• New electronics: zBPM in NSLS-II 

• Mechanical motion:
• High stability BPM support to isolate ground motion: 

Invar, Granite 
• Mechanical motion monitoring: Hydrostatic level 

system   

APSU: Invar and granite support on BPMs

ALS: 0.2 μm long term stability with PTC

NSLS-II: zBPM new electronics 

http://accelconf.web.cern.ch/ibic2020/talks/frao03_talk.pdf
https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES_Workshop_NSLS-II__2018-2_Padrazo.pdf
https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES_Workshop_NSLS-II__2018-2_Padrazo.pdf

BPM electronics long term stability: 130 nm 10 nm 
(BPM VS zBPM)

http://accelconf.web.cern.ch/ibic2020/talks/frao03_talk.pdf
https://indico.cern.ch/event/743699/contributions/3072640/attachments/1750517/2836233/ARIES_Workshop_NSLS-II__2018-2_Padrazo.pdf


• Monitor photon beam stability, located at the front end or beamline (10s-100 
m from source) 

• Sensitive to beam angle stability: a factor of 10 times higher than RF BPMs
• Most sensitive knobs to control photon beam position at beamlines

• Electronics: similar as RF BPMs, easy to accommodate into e-beam feedback
• ~0.2 µm long term stability 
• Used for hard x-rays, position-photon energy dependence. Difficult for soft-x-

ray (R&D) or VUV 

Photon BPM

23

APSU Grid photon BPM 
NSLS-II blades photon BPM 



• BPM 10 Hz data x, y, intensity: long term
beam orbit drift (secs to days), low
frequency spectrum (<10 Hz), precise
beam lifetime measurement

• BPM 10 kHz data x, y: short term beam
stability (ms to secs), noise locator, fast
feedback, high frequency spectrum (Hz
to kHz), daily track machine
performance

• BPM TBT data: beam instability, beam
dynamics, injection optimization,
collective effect study, beam local lost,
feedback etc.

BPMs data for stability monitor

24

NSLS-II live beam motion spectrum 

BPM output data



• Noise locator: pinpoint motion sources and improve them at 
SOLEIL

• Identify orbit spectrum peaks frequency: 46/50/54/128 Hz 
• Localization method to identify the noise sources: cooling fan in 

kickers, FCT and shaker
• Technical solutions: reposition fans 
• The integrated noise spectrum improved by a factor of 2 in both 

planes. 

BPM data: improve beam stability from sources

25

Cooling fan

Beam spectrum before and after noise suppression 

https://accelconf.web.cern.ch/DIP
AC2011/papers/tupd78.pdf
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Means to reach high beam 
stability

• Sources perturbing beam stability
• Diagnostics monitoring beam stability
• Feedbacks increasing beam stability 



• Feedback system: further improve beam stability

• Light sources mostly use global orbit feedbacks based on SVD algorithm 
• Slow corrector: strong kick (mrad). Limited bandwidth, DC to ~Hz
• Fast correctors: weak kick (10s µrad). ~kHz correction rate and bandwidth, DC to 100s Hz

• NSLS-II fast orbit feedback (FOFB)
• 30*[6-10] BPMs: 10 kHz sampling
• 30*3 FC: 10 kHz sampling
• Fast FOFB correction cycle for large bandwidth 
• FPGA based parallel process Cell Controller and SDI link:  

• High-speed calculation and fast data delivery
• Receive local BPM data
• Transfer/receive BPM data in other cells
• Carry FOFB calculation
• Transfer PSs setpoints to PSC 

27

Feedbacks: Fast Orbit Feedback

NSLS-II: Yuke Tian, Kiman Ha, Lihua Yu

NSLS-II FOFB topology

Diagram of FOFB system



Feedbacks: NSLS-II Fast Orbit Feedback

28

• Individual eigenmode compensation 
• Control each eigenmode with a different 

controller with different compensation 
in the frequency domain

𝜃𝜃 = 𝑉𝑉Σ−1𝑈𝑈𝑇𝑇𝑥𝑥
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑄𝑄(𝑧𝑧)𝜃𝜃

• 𝑄𝑄 𝑧𝑧 : control individual mode compensation 
and change gain

• Gain and bandwidth: represent FOFB 
performance to suppress motion high gain, 
large bandwidth 

NSLS-II Fast Orbit Feedback with Individual Eigenmode Compensation (cern.ch)

Individual eigenmode control

https://accelconf.web.cern.ch/PAC2011/papers/weodn4.pdf


• Efforts to improve FOFB gain and bandwidth
• Reduced BPMs delay by 100 𝜇𝜇s
• Increased cell controllers update rate to 10 kHz
• FOFB loop total latency: 220 µs

• Bandwidth increase from 250 Hz to 400 Hz 
(horizontal) and 300 Hz (vertical)

• Gain increased by 10 dB (3 times) and integrated 
PSD motion reduced by 30% (at 500 Hz)

• Typical ID source position/angle integrated motion 
[1-500 Hz]: 0.6% (H) and 7% (V) 

• FOFB only: accumulated in a week, ~half of full 
strength. Not sufficient to maintain long term drift  
(90 FCs*200+ BPMs) 

• Measures: unified orbit feedback on ID BPM/xBPM
and interact with FOFB (APS/ALS/SOLEIL) to reach 
µm long term stability 
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FOFB stage-to-stage latency and improvements 

H plane

V planeNSLS-II: Sukho Kongtawong 

Sukho Kongtawong, Recent improvements in beam orbit 
feedback at NSLS-II, NIMA 976 (2020) 164250

Feedbacks: NSLS-II Fast Orbit Feedback (CONT.) 

ID source position stability feedback ON/OFF



• Slow and fast orbit feedback systems are not compatible in a common frequency domain

• I: FOFB  with Download (steps in red)

• II. FOFB/SOFB interaction: orbit communication between 2 systems (steps in black)

• III. FOFB/SOFB interaction and download*: achieve short- and long-term stability at all source points 
(SOLEIL) (all steps)

Feedbacks: Slow and Fast correction combination 
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*Global Orbit Feedback Systems Down to Dc Using Fast and Slow 
Correctors, DIPAC 2009, Nicolas HUBERT

SOLEIL: Nicolas Hubert, Laurent Nadolski



• UOFB: unify normal operation feedbacks, slow orbit feedback (SOFB), fast orbit 
feedback (FOFB), and RF frequency feedback (RFFB) into one feedback

• Include 180*2 DC, 90*2 fast correctors, RF frequency and 224*2 RF BPMs and 
3*2 X BPMs in feedback

• Be flexible to adjust ID bump, BM bump and X BPM photon local bumps at any 
time

• Maintain beam long-term orbit stability for all beamlines within in ~µm

Slow and Fast orbit feedback: NSLS-II

31

Normal feedback

UOFB

Y. Hidaka, UNIFIED ORBIT FEEDBACK AT NSLS-II , NAPAC22

ID sources long term position/angle stability  



• Field integral of ID varies with gap and phase 
• Electron and photon beam position and angular displacement 

• Compensation methods: FF correction using local compensation scheme with SR correctors
• I: Correct motion using electron BPMs, ~ µm accuracy. Good for electron beam stability, but miss 

the undulator steering on photon beam 
• II: Include beamline photon BPM to correct ID’s position & angle. Sub-µrad photon stability (SLS*)

• ID other effects : optics (coupling, tune, beta), DA 

Feedbacks: ID feed-forward correction 

32

ID local compensation with electron BPM and photon BPM

*J. Chrin etc. Local correction schemes to counteract insertion device effects, NIMA  592 (2008) 141–153 

SLS: J. Chrin

https://www.sciencedirect.com/science/article/pii/S016890020800538X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S016890020800538X?via%3Dihub#!


• Knobs: mono crystal Pitch & Roll (100 
Hz), mirror Pitch (5 Hz) 

• Objects: Dimond BPMs 

• Reach high photon beam 
position/intensity (SSA) and angle 
stability 

• Limited bandwidth using optical 
components (mirror, mono-crystals 
etc) to correct photon  beam motion 

Feedbacks: Active beamline components feedback 
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z=94m

z=109m z=32.6m
HFMSSA HDCM

z=30.42m

DBPM DBPM

z=94.4m

z=64.5m

Nano Optics

Fast mono beam “angle” feedback 
using mono pitch and roll

Slow mono beam “position” feedback 
for stable beam intensity through SSA

ID

Feedback off Feedback on

NSLS-II: Yong Chu, Xiaojing 
Huang, Petr Ilinski

*Petr Ilinski , Active feedback implementation for beamline photon beam stability, 7th DLSR 2021
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Angular Stability with feedback OFF/ON



• A new feedback system:  control electron beam to keep beam stability at X-ray BPM, close to 
beamline sample point 

• Correct photon beam motion from electron beam and beamline optics

• Using SR four fast correctors for transparent bump correction 

• Maintain X-ray beam stability to <3% of a beam size with bandwidth >1kHz

Diamond: kHz feedback using beamline xBPM
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Feedbacks impacts on X-ray BPMLayout of the beamline and source point 

C. Bloomer, fast feedback using electron beam steering on beamline x-Ray BPM, IBIC2019, p172-176

Diamond: C. Bloomer



Light source Feedback type BPM sampling rate [kHz] Bandwidth [Hz] Note

ALS Slow + Fast 1.1 60

ALBA Fast 5 100

APS Slow + Fast 1.16 80

APSU* Slow+ Fast 22.6 1000 Demonstrated

BESSY II Fast 2.4 40

CLS Slow 45

DIAMOND Fast 10 130

ELETTRA Fast 10 150

ESRF-EBS Slow+ Fast 10 500

HEPS* Slow+ Fast 22 500-1000

MAX IV Slow+ Fast 10 2/5% w/o FOFB

NSLS-II Slow+ Fast 10 400

PETRA III Slow+ Fast 10 200

PLS Fast 4 100

SIRIUS Fast 25 1000

SLS Fast 4 100

SOLARIS SOFB+ FOFB 2

SOLEIL Slow+ Fast 10 200

SPEAR3 Fast 4 100

SSRF Slow+ Fast 10 100
TPS Fast 10 300

List of feedback systems in light sources 

*Fast feedback systems 
not in operation



• Increasing position/angular stability requirements: important to feedback on beamline components 
• Limitation on electron BPM resolution 
• Mechanical/thermal instability causes relative ground motion of experiments with respect to accelerator 

floor 
• Ground motion, ‘ATL law’ : relative ground motion of 2 points separated by distance L after time T: 

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2 = 𝐴𝐴𝐴𝐴𝐴𝐴 long term photon source stability* (Vadim Sajaev)

• A unified electron orbit/photon trajectory feedback system needed to stabilize beam at the 
sample—B. Hettel (advocated many years ago) 

Unified feedback system

36*Predicting orbit motion for the APS Upgrade storage ring, Vadim Sajaev, 7th-dlsr-2021

APSU: N. Sereno, J. Carwardine, 
P. Kallakuri , M. Borland  



• Require <10% beam size/divergence stability (0.01-1000 Hz) 

• Expand feedback bandwidth/minimize latency: 
• BPM higher sampling rate: 271 kHz TBT data 

• Faster correctors: 22.6 kHz sampling rate, 10 kHz bandwidth 

• Lower processing latency to 44.2 µs  

• Unified feedback algorithm: combines fast and slow 
correctors without compromising spatial or dynamical 
performance

• Demonstrated APS-U fast feedback on APS with 1 kHz 
bandwidth 

APS-U: 1 kHz large bandwidth orbit feedback

37
APSU: N. Sereno, J. Carwardine, 
P. Kallakuri , M. Borland  

Feedback communication latencies 



• New synchrotron light sources approach diffraction limit emittance, lower 
by two order magnitude with smaller beam size  

• Tighter tolerance on beam spatial and time domain stability from high-
performance beamlines 

• Our community invented and continue to develop different means and 
methods to advance beam stability
• Investing in facility construction early in attempt to reduce the environmental 

noise sources
• Improvements in stabilization of accelerator components: BPMs (speed and 

resolution), Power Supply (stability and controls) 
• Advances in Feedbacks (FOFB, photon feedback)

• Towards the future, unified feedback system is the trend to stabilize both 
electron and photon beam motion in a larger bandwidth 

Summary and outlook 
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Contact: gwang@bnl.gov

Thanks for your attention!
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Pin-point the motion source's potential location  
• Analyze individual BPM (10 kHz) spectrum with FFT to get amplitude and phase components 
• Extract single frequency motion at all BPMs 
• Pseudo AC orbit correction to get efficient corrector strength 
• Check the aera of the most efficient correctors + noise frequency 
• NSLS-II implements operation tool for live motion spectrum and noise locator 

Feedbacks: Noise locator 
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BPM spectrum amplitude  Pseudo AC orbit correction

NSLS-II: Sukho Kongtawong
BESSY/Diamond: Guenther Rehm
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