Keyword: betatron
Paper Title Other Keywords Page
MOP36 Novel Beam Excitation System Based on Software-Defined Radio acceleration, software, controls, FPGA 133
  • P.J. Niedermayer, R. Singh
    GSI, Darmstadt, Germany
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730.
A signal generator for transverse excitation of stored particle beams is developed and commissioned at GSI SIS18. Thereby a novel approach using a software-defined radio system and the open-source GNU Radio ecosystem is taken. This allows for a low cost yet highly flexible setup for creating customizable and tuneable excitation spectra. Due to its open-source nature, it has the potential for long term maintainability and integrability into the accelerator environment. Furthermore, this opens up the possibility to easily share algorithms for the generation of waveforms across accelerator facilities. As a first application, the device is used to control the coherence and amplitude of transverse oscillations by excitation in the vicinity of betatron sidebands. It enables measurement of beam parameters like tune and chromaticity. On a longer term, it will be used for more complex tasks such as beam shaping, extraction and automated parameter scans towards these complex processes.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP36  
About • Received ※ 31 August 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 10 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU1C3 Beam-Based Calibration of Sextupole Magnet Displacement with Betatron Tune Shift sextupole, coupling, target, experiment 192
  • S. Takano, T. Fujita, K. Fukami, H. Maesaka, M. Masaki, K. Soutome, M. Takao, T. Watanabe
    JASRI, Hyogo, Japan
  • K. Fukami, T. Hiraiwa, H. Maesaka, K. Soutome, S. Takano, H. Tanaka, T. Watanabe
    RIKEN SPring-8 Center, Hyogo, Japan
  • K. Ueshima
    QST, Sendai, Miyagi, Japan
  The alignment of sextupole magnets is one of the critical issues for the upcoming 4th generation light sources and future colliders. The alignment error of magnets and the beam offsets in sextupoles should be within a few 10 µm rms to ensure enough dynamic aperture for stable operation and minimize deterioration of beam quality. Considering that the quadrupole field in a sextupole is proportional to the displacement (normal Q for horizontal and skew Q for vertical), we propose a beam-based calibration (BBC) method to measure the sextupole centers by observing the betatron tune shift. The magnetic center is the point where the tune does not change regardless of the sextupole field strength. The key is increasing the XY coupling to obtain a tune shift large enough for the vertical calibration. We studied experimentally the feasibility of the sextupole BBC at SPring-8 and successfully demonstrated the principle for both horizontal and vertical calibration. The tune shift was monitored by bunch-by-bunch feedback electronics with approximately 1e-5 resolution. The measurement resolution of the sextupole center was approximately 10 µm std., which was sufficient for our requirement.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU1C3 [4.150 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU1C3  
About • Received ※ 31 August 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP34 LHC Schottky Spectrum from Macro-Particle Simulations simulation, synchrotron, operation, MMI 308
  • C. Lannoy, D. Alves, N. Mounet
    CERN, Meyrin, Switzerland
  • C. Lannoy, T. Pieloni
    EPFL, Lausanne, Switzerland
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
  We introduce a method for building Schottky spectra from macro-particle simulations performed with the PyHEADTAIL code, applied to LHC beam conditions. In this case, the use of a standard Fast Fourier Transform (FFT) algorithm to recover the spectral content of the beam becomes computationally intractable memory-wise, because of the relatively short bunch length compared to the large revolution period. This would imply having to handle an extremely large amount of data for performing the FFT. To circumvent this difficulty, a semi-analytical method was developed to compute efficiently the Fourier transform. The spectral content of the beam is calculated on the fly along with the macro-particle simulation and stored in a compact manner, independently from the number of particles, thus allowing the processing of one million macro-particles in the LHC, over 10’000 revolutions, in a few hours, on a regular computer. The simulated Schottky spectrum is then compared against theoretical formulas and measurements of Schottky signals previously obtained with lead ion beams in the LHC.  
poster icon Poster TUP34 [1.864 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP34  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 01 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP43 Requirements and Design for the PETRA IV Fast Orbit Feedback System electron, simulation, feedback, power-supply 343
  • S.H. Mirza, A. Aloev, H.T. Duhme, B. Dursun, A. Eichler, S. Jabłoński, J. Klute, F. Ludwig, S. Pfeiffer, H. Schlarb, B. Szczepanski
    DESY, Hamburg, Germany
  • G. Rehm
    HZB, Berlin, Germany
  PETRA IV is the upcoming low-emittance, 6 GeV, fourth- generation light source at DESY Hamburg. It is based upon a six-bend achromat lattice with additional beamlines as compared to PETRA III. Stringent stability of the electron beam orbit in the ring will be required to achieve diffraction- limited photon beam quality. In this regard, the requirements and the proposed topology of the global orbit feedback system are discussed for expected perturbations. An initial analysis based upon system requirements, design and modelling of the subsystems of the orbit feedback system is also presented  
poster icon Poster TUP43 [0.923 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP43  
About • Received ※ 14 September 2022 — Revised ※ 25 October 2022 — Accepted ※ 01 December 2022 — Issue date ※ 03 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU3I1 Investigating the Transverse Dynamics of Electron Bunches in Laser-Plasma Accelerators electron, laser, plasma, radiation 348
  • A. Koehler
    DLR, Berlin, Germany
  The demonstrations of GeV electron beams and FEL radiation driven by a centimeter-scale device illustrate the tremendous progress of laser-plasma accelerators. In such applications, beam divergence and size, along with beam energy and charge, are critical parameters of electron beams. An insight on the transverse parameters and their dynamics such as beam decoherence can be obtained by diagnostics complemented by betatron radiation detectors. This talk will also provide a brief overview of recent techniques for accessing the transverse phase space.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU3I1 [2.119 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3I1  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 06 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)