Keyword: wakefield
Paper Title Other Keywords Page
MOP09 Towards Higher Stability in Large Scale Cavity BPM Systems cavity, collider, electron, operation 40
 
  • A. Lyapin, M.S. McCallum
    JAI, Egham, Surrey, United Kingdom
  • A. Aryshev, K.O. Kruchinin
    KEK, Ibaraki, Japan
 
  Funding: This work is supported by Royal Society International Exchanges Grant number IEC\R3\213050
In this contribution we consider a possible solution to long-term stability issues common in cavity BPM systems. The method will see a wider use active in-situ calibration systems injecting a tone into the measurement channel. We plan to compensate the bulk of the beam generated signal and so potentially extend the dynamic range of the electronics, reduce the amount of wakefield seen by the beam. The signal matching the real beam can then be used for mimicking the beam and calibrating out any drifts of the whole sensing and processing chain. We present the concept, give some simulated results and consider possible hardware solutions.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP09  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 12 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP18 High-Resolution Interferometric Beam-Size Monitor For Low-Intensity Beams photon, plasma, synchrotron, detector 265
 
  • B. Alberdi-Esuain, J.-G. Hwang, T. Kamps
    HZB, Berlin, Germany
  • T. Kamps
    HU Berlin, Berlin, Germany
 
  Plasma-based accelerator technology is reaching a mature state, where applications of the beam for medical sciences, imaging, or as an injector for a future large-scale accelerator-driven light source become feasible. Particularly, the requirements for beam injection into a storage-ring-based light source are very strict with regards to beam quality and reliability. A non-invasive diagnostics greatly helps to reduce the commissioning time of the machine. We present a device suitable for online, non-destructive monitoring of the transverse spot size of the injected beam. In order to measure lateral beam sizes with a few-micrometer resolution, the technique uses an interferometric regime of coherent synchrotron radiation that is enabled by a sub-femtosecond short bunch-length. Simulations of the photon flux and the retrieval of the beam spot-size are performed for different bandwidth filters in order to define the bandwidth acceptance. Results show the potential of the proposed system that achieves precise retrieval of the complex degree of coherence at an extremely low photon intensity similar to those expected towards the plasma-acceleration injectors.  
poster icon Poster TUP18 [9.961 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP18  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 03 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP26 Status of a Monitor Design for Single-Shot Electro-Optical Bunch Profile Measurements at FCC-ee laser, electron, operation, simulation 455
 
  • M. Reißig, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, G. Niehues, M.M. Patil, R. Ruprecht, C. Widmann
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: Supported by the Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD. FCCIS is funded by the EU’s Horizon 2020 research and innovation programme under grant No 951754.
At the KIT electron storage ring KARA (Karlsruhe Research Accellerator) an electro-optical (EO) near-field monitor is in operation performing single-shot, turn-by-turn measurements of the longitudinal bunch profile using electro-optical spectral decoding (EOSD). In context of the Future Circular Collider Innovation Study (FCCIS), a similar setup is investigated with the aim to monitor the longitudinal bunch profile of each bunch for dedicated top-up injection at the future electron-positron collider FCC-ee. This contribution presents the status of a monitor design adapted to cope with the high-current and high-energy lepton beams foreseen at FCC-ee.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP26  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 24 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)