Keyword: synchrotron-radiation
Paper Title Other Keywords Page
MOP23 Recent LHC SR Interferometer Simulations and Experimental Results radiation, simulation, synchrotron, dipole 88
 
  • D. Butti, E. Bravin, G. Trad
    CERN, Meyrin, Switzerland
  • S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
 
  At the CERN Large Hadron Collider (LHC), among the different systems exploiting Synchrotron Radiation (SR) for beam diagnostics, interferometry is under study as a non-invasive technique for measuring absolute beam transverse sizes. Extensive numerical simulations, recently completed for characterising the spatial coherence of the LHC SR source, facilitated the optimisation of the LHC interferometer design and the existing prototype system tested in the past has been refurbished to include the new simulation findings. This contribution describes the simulation specificity and then focuses on first measurements performed at the beginning of the LHC run 3. Such experiments allowed to obtain a first validation of the expected system performance at the injection energy of 450 GeV. A complete benchmark of the simulations will be carried out in 2022 as soon as the LHC will reach its top energy of 6.8 TeV.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP23  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP31 Automatic Adjustment and Measurement of the Electron Beam Current at the Metrology Light Source (MLS) electron, storage-ring, radiation, synchrotron 113
 
  • Y. Petenev, J. Feikes, J. Li
    HZB, Berlin, Germany
  • A.B. Barboutis, R. Klein, M. Müller
    PTB, Berlin, Germany
 
  The electron storage ring MLS (Metrology Light Source) is used by the Physikalisch-Technische Bundesanstalt (PTB), the German metrology institute, as a primary source standard of calculable synchrotron radiation in the ultraviolet and vacuum ultraviolet spectral range. For this, all storage ring parameters have to be appropriately set and measured with high uncertainty. E.g., the electron beam current can be varied by more than 11 orders. This adjustment of the electron beam current, and thus the spectral radiant intensity of the synchrotron radiation, for the specific calibration task is conveniently performed fully automatic by a computer program.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP31  
About • Received ※ 01 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3C3 Pulse-by-Pulse Photon Beam Position Measurements at the SPring-8 Undulator Beamline radiation, synchrotron, injection, photon 173
 
  • H. Aoyagi, T. Fujita, K. Kobayashi, H. Osawa, S. Takahashi
    JASRI/SPring-8, Hyogo, Japan
 
  Funding: This work is partly supported by Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (c), No.18K11943, 21K12530.
This study analyzes a pulse-mode x-ray beam position monitor that enables pulse-by-pulse position measurement in a synchrotron radiation beamline of the synchrotron radiation facility, SPring-8. The monitor is equipped with blade-shaped detection elements utilizing diamond heatsinks to reduce stray capacitance and a microstripline transmission line to improve high-frequency characteristics. The detection elements operate as photocathodes and generate single unipolar pulses with a full width at half-maximum of less than 1 ns, allowing pulse-by-pulse measurement of the synchrotron radiation beam. We confirmed the basic operation of the monitor at the SPring-8 bending magnet beamline*. The detection element’s heat resistance consequently improved. An evaluation test was carried out at the SPring-8 undulator beamline with significantly high synchrotron radiation intensity. We aim to report the evaluation results of the sensitivity and resolution of the monitor measured by exciting a betatron oscillation in the horizontal/vertical direction using beam shakers of the SPring-8 storage ring and the observation results of the pulse-by-pulse photon beam dynamics induced by beam injection.
* https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.24.032803
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO3C3 [1.574 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MO3C3  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 04 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP17 HL-LHC Beam Gas Fluorescence Studies for Transverse Profile Measurement background, synchrotron, radiation, photon 261
 
  • O. Sedláček, M. Ady, C. Castro Sequeiro, A.R. Churchman, S. Mazzoni, G. Schneider, K. Sidorowski, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • M. Sameed
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
  • O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  In a gas jet monitor, a supersonic gas curtain is injected into the beam pipe and interacts with the charged particle beam. The monitor exploits fluorescence induced by beam-gas interactions, thus providing a minimally invasive transverse profile measurement. Such a monitor is being developed as part of the High Luminosity LHC upgrade at CERN. As a preliminary study, the fluorescence cross section of relevant gases must be measured for protons at 450 GeV and 6.8 TeV (i.e. the LHC injection and flat top energies). In these measurements, neon, or alternatively nitrogen gas, will be injected into the LHC vacuum pipe by a regulated gas valve to create an extended pressure bump. This work presents the optical detection system that was installed in 2022 in the LHC to measure luminescence cross-section and horizontal beam profile. Preliminary measurements of background light and first signals are presented in this paper.  
poster icon Poster TUP17 [0.673 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP17  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 21 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)