Keyword: data-acquisition
Paper Title Other Keywords Page
TUP36 Beam Characterization of Slow Extraction Measurement at GSI-SIS18 for Transverse Emittance Exchange Experiments emittance, extraction, simulation, instrumentation 318
 
  • J. Yang, P. Boutachkov, P. Forck, T. Milosic, R. Singh, S. Sorge
    GSI, Darmstadt, Germany
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730.
The quality of slowly, typically several seconds, extracted beams from the GSI synchrotron SIS18 is characterized with respect to the temporal beam stability, the so-called spillμstructure on the 100 µs scale. A pilot experiment was performed utilizing transverse emittance exchange to reduce the beam size in the extraction plane, and the improvement of spillμstructure was found. Important beam instrumentation comprises an Ionization Profile Monitor for beam profile measurement inside the synchrotron and a plastic scintillator at the external transfer line for ion counting with up to several 106 particles per second and 20 µs time slices. The performant data acquisition systems, including a scaler and a fast Time-to-Digital Converter (TDC), allow for determining the spill quality. The application of the TDC in the measurement and related MAD-X simulations are discussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP36  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 11 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP40 A Modern Ethernet Data Acquisition Architecture for Fermilab Beam Instrumentation Ethernet, software, instrumentation, network 500
 
  • R.R. Santucci, J.S. Diamond, N. Eddy, A. Semenov, D.C. Voy
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Accelerator Division, Instrumentation Department is adopting an open-source framework to replace our embedded VME-based data acquisition systems. Utilizing an iterative methodology, we first moved to embedded Linux, removing the need for VxWorks. Next, we adopted Ethernet on each data acquisition module eliminating the need for the VME backplane in addition to communicating with a rack mount server. Development of DDCP (Distributed Data Communications Protocol), allowed for an abstraction between the firmware and software layers. Each data acquisition module was adapted to read out using 1GbE and aggregated at a switch which up linked to a 10GbE network. Current development includes scaling the system to aggregate more modules, to increase bandwidth to support multiple systems and to adopt MicroTCA as a crate technology. The architecture was utilized on various beamlines around the Fermilab complex including PIP2IT, FAST/IOTA and the Muon Delivery Ring. In summary, we were able to develop a data acquisition framework which incrementally replaces VxWorks & VME hardware as well as increases our total bandwidth to 10Gbit/s using off the shelf Ethernet technology.  
poster icon Poster WEP40 [0.738 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP40  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP41 ENeXAr: An EPICS-Based Tool for User-Controlled Data Archiving EPICS, status, site, controls 504
 
  • J.F. Esteban Müller
    ESS, Lund, Sweden
 
  ENeXAr is a data archival tool for EPICS-based systems. It is intended as a complement for traditional data archiving solutions, to cover use cases for which they are usually not designed: mainly for limited-duration high-data rates from a subset of signals. The service is particularly useful for activities related to machine commissioning, beam studies, and system integration testing. Data acquisition is controlled via PV Access RPC commands and the data is stored in standard HDF5-based NeXus files. The RPC commands allow users to define the acquisition parameters, the data structure, and the metadata. The usage of EPICS RPC commands means that the users are not required to install additional software. Also, acquisitions can be automatized directly from EPICS IOCs.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP41  
About • Received ※ 07 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 20 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)