Keyword: Ethernet
Paper Title Other Keywords Page
MOP13 Test and Measurements Results of the Pilot Tone Front End Industrialization for Elettra 2.0 electron, electronics, controls, instrumentation 51
 
  • G. Brajnik, R. De Monte
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Cargnelutti, U. Dragonja, P. Leban, P. Paglovec, B. Repič, A. Vigali
    I-Tech, Solkan, Slovenia
 
  Elettra 2.0 will be the low-emittance upgrade of the present machine, a third-generation lightsource based in Trieste, Italy. The new machine, foreseen to be completed in 2025-2026, will be equipped with 168 beam position readout systems divided into 12 cells. The BPM electronics will be based on the prototypes developed by the laboratory, relying on the pilot-tone compensation technique for assuring the required resolution and long-term stability. The industrialization and production of the BPM electronics system are being carried out in partnership with Instrumentation Technologies, a company that has experience with BPM readout systems within the accelerator field. This paper will present the results of the industrialization of one of BPM system’s key component: the Pilot Tone Front End, focusing on its improvements introduced on electronic and mechanical sides, giving not only a significant performance gain with respect to the previous prototype but also improving robustness and reliability. An overview of the testing procedures that will assure the performance repeatability of the series will also be provided.  
poster icon Poster MOP13 [1.295 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP13  
About • Received ※ 30 August 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 05 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP38 Beam Profile Monitoring and Distributed Analysis Using the RabbitMQ Message Broker interface, network, software, controls 140
 
  • D. Proft, K. Desch, D. Elsner, F. Frommberger, S. Kronenberg, A. Spreitzer, M.T. Switka
    ELSA, Bonn, Germany
 
  The ELSA facility utilizes several digital cameras for beam profile measurements on luminous screens and synchrotron radiation monitors. Currently a multitude of devices with analog signal output are being replaced in favor of digital outputs, preferably with data transfer via Ethernet. The increased network traffic for streaming, analyzing, and distribution of processed data to control system and machine operators is managed through a supplementary camera network in which distributed computing is performed by the RabbitMQ message broker. This allows performant and platform-independent image acquisition from multiple cameras, real time profile analysis, and supports programming interfaces for C++ and Python. The setup and performance of the implementation are presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP38  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 28 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP39 Development of Compact Radio Frequency Sources controls, ECR, interface, radio-frequency 144
 
  • M.S. McCallum, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
 
  Funding: This work is supported by STFC’s Impact Acceleration Account scheme.
Our group is developing a family of compact radio frequency sources aiming to cover 50 MHz to 20 GHz with several models. The primary goal is to provide an alternative to using expensive laboratory generators in permanent installations. In addition, we work towards providing a higher specification than similar telecommunications devices as this is a typical requirement in accelerator instrumentation. We take a minimalistic approach with only a network interface planned, assuming that such a device operates remotely in a large facility. An EPICS interface is in the works for monitoring and control. In this paper, we present the results of rapid prototyping with XMicrowave components. The first measurements show encouraging phase noise performance and spectral purity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP39  
About • Received ※ 08 September 2022 — Revised ※ 12 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 02 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP40 A Modern Ethernet Data Acquisition Architecture for Fermilab Beam Instrumentation software, instrumentation, network, data-acquisition 500
 
  • R.R. Santucci, J.S. Diamond, N. Eddy, A. Semenov, D.C. Voy
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Accelerator Division, Instrumentation Department is adopting an open-source framework to replace our embedded VME-based data acquisition systems. Utilizing an iterative methodology, we first moved to embedded Linux, removing the need for VxWorks. Next, we adopted Ethernet on each data acquisition module eliminating the need for the VME backplane in addition to communicating with a rack mount server. Development of DDCP (Distributed Data Communications Protocol), allowed for an abstraction between the firmware and software layers. Each data acquisition module was adapted to read out using 1GbE and aggregated at a switch which up linked to a 10GbE network. Current development includes scaling the system to aggregate more modules, to increase bandwidth to support multiple systems and to adopt MicroTCA as a crate technology. The architecture was utilized on various beamlines around the Fermilab complex including PIP2IT, FAST/IOTA and the Muon Delivery Ring. In summary, we were able to develop a data acquisition framework which incrementally replaces VxWorks & VME hardware as well as increases our total bandwidth to 10Gbit/s using off the shelf Ethernet technology.  
poster icon Poster WEP40 [0.738 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP40  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)