Keyword: detector
Paper Title Other Keywords Page
MOP01 SLS 2.0 – Status of the Diagnostics emittance, storage-ring, injection, distributed 15
  • C. Ozkan Loch, R. Ischebeck, N. Samadi, A.M.M. Stampfli, J. Vila Comamala
    PSI, Villigen PSI, Switzerland
  This poster will give an overview of the diagnostics development for SLS 2.0. Details on the beam size monitors in the storage ring, the screen monitors for the booster to ring transfer line, and beam loss monitors for the linac and storage ring will be presented. Test results carried out at the SLS will also be presented.
BPMs and feedback systems are not covered in this contribution.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP01  
About • Received ※ 06 September 2022 — Revised ※ 13 September 2022 — Accepted ※ 18 September 2022 — Issue date ※ 01 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP17 Development of a Scintillation Fibre Transverse Profile Monitor for Low-Intensity Ion Beams at HIT photon, radiation, electron, experiment 67
  • R.L. Hermann, M. Galonska, Th. Haberer, A. Peters
    HIT, Heidelberg, Germany
  • T. Gehrke
    German Cancer Research Center (DKFZ), Heidelberg, Germany
  • B. Leverington
    Universität Heidelberg, Heidelberg, Germany
  Funding: Funded by Deutsche Forschungsgemeinschaft (DFG), project number 426970603.
The Heidelberg Ion-Beam Therapy Center (HIT) pro-vides proton, helium, and carbon-ion beams with differ-ent energies and intensities for cancer treatment and oxy-gen-ion beams for experimentation. Below the intensities used for therapy, low-intensity ion beams (below 1·105 ions/s) are available for various experiments via manual-ly degrading of the beam. Since there is no built-in beam profile instrumentation device for this intensity region, the development of a transverse ion beam profile monitor for these intensities is therefore of interest. The principle of operation is based on scintillating fibres, particularly those with enhanced radiation hardness. The fibres transform the deposited energy of a traversing ion into photons, which are then converted and amplified via silicon pho-tomultipliers (SiPMs) into electric pulses. These pulses are recorded and processed by a novel and dedicated readout electronics: the front-end readout system (FERS) A5200 by CAEN. A prototype set-up consisting of all the above-mentioned parts was tested in beam and has proven to record the transverse beam profile successfully from intensities of 1·107 ions/s down to 1·102 ions/s.
poster icon Poster MOP17 [1.943 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP17  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 10 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP21 First Results of PEPITES, A New Transparent Profiler Based on Secondary Electrons Emission for Charged Particle Beams electron, proton, radiation, vacuum 80
  • C. Thiebaux, L. Bernardi, F. Gastaldi, Y. Geerebaert, R. Guillaumat, F. Magniette, P. Manigot, M. Verderi
    LLR, Palaiseau, France
  • É. Delagnes, F.T. Gebreyohannes, O. Gevin
    CEA-IRFU, Gif-sur-Yvette, France
  • F. Haddad, N. Servagent
    SUBATECH, Nantes, France
  • F. Haddad, C. Koumeir, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
  Funding: This study is supported by two programs of the Agence Nationale de la Recherche, ANR-17-CE31-0015 and ANR-11-EQPX-0004.
The PEPITES project* consists of a brand new operational prototype of an ultra-thin, radiation-resistant profiler capable of continuous operation on mid-energy (O(100 MeV)) charged particle accelerators. Secondary electron emission (SEE) is used for the signal because it only requires a small amount of material (10 nm); very linear, it also offers good dynamics. The lateral beam profile is sampled using segmented electrodes, constructed by thin film methods. Gold strips, as thin as the electrical conductivity allows (~ 50 nm), are deposited on an insulating substrate as thin as possible. While crossing the gold, the beam ejects the electrons by SEE, the current thus formed in each strip allows the sampling. SEE was characterized at ARRONAX with 68 MeV proton beams and at medical energies at CPO**. Electrodes were subjected to doses of up to 109 Gy without showing significant degradation. A demonstrator with dedicated electronics (CEA) is installed at ARRONAX and will be used routinely with proton beams of 17-68 MeV for intensities of 100fA to 100nA. An overview of the design and first measurements will be presented, and system performances will be assessed.
*LLR, ARRONAX cyclotron and CEA
**Orsay Protontherapy Center (Institut Curie)
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP21  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP22 Development of New Beam Position Detectors for the NA61/SHINE Experiment proton, vacuum, experiment, target 84
  • M.U. Urbaniak, Y. Balkova, S.K. Kowalski, S. Puławski, K.W. Wójcik
    University of Silesia in Katowice, Katowice, Poland
  NA61/SHINE is a fixed-target experiment located at CERN Super Proton Synchrotron. The development of new beam position detectors is part of the ongoing upgrade of the detector system. Two types of detectors have been manufactured and tested. The first one is a scintillating fibers detector with photomultiplier as a readout. The scintillating fibers detector consists of two ribbons, which are arranged perpendicularly to each other. Each ribbon is made of two layers of 250 µm diameter fibers. The grouping method was used, which allows using of a single multichannel photomultiplier for one detector. The second type of detector is based on the single-sided silicon strip detector (SSD). In this project, Si strips produced by Hamamatsu (S13804) were used, where the pitch has a width equal to 190 um. The developed detectors must meet several requirements: should work efficiently with proton and lead beams with beam intensity on the level of 100 kHz, the detector’s material on the beamline should be minimized, the detectors should be able to determine the position of X and Y hit of each beam particle with maximum possible accuracy. During my speech I will present the results of our work.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP22  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP29 Low Gain Avalanche Detector Application for Beam Monitoring linac, monitoring, operation, electron 109
  • V. Kedych, T. Galatyuk, W. Krüger
    TU Darmstadt, Darmstadt, Germany
  • T. Galatyuk, S. Linev, J. Pietraszko, C.J. Schmidt, M. Träger, M. Traxler, F. Ulrich-Pur
    GSI, Darmstadt, Germany
  • J. Michel
    Goethe Universität Frankfurt, Frankfurt am Main, Germany
  • A. Rost
    FAIR, Darmstadt, Germany
  • V. Svintozelskyi
    Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  Funding: This work has been supported by DFG under GRK 2128
The S-DALINAC is a superconductive linear electron accelerator operating at 3 GHz and allows operation in energy recovery mode (ERL). For the operation in the ERL mode accelerated and decelerated beams travel inside the same beamline but not necessarily share the same orbit. That leads to a bunch rate of 6 GHz. Non-destructive monitoring tools that allow optimization of acceleration and deceleration processes and achieve high recovery efficiency are important for operation in the ERL mode. The Low Gain Avalanche Detector (LGAD) is a silicon detector with internal gain layer optimized for 4-D tracking with timing resolution below 50 ps* which makes it a promising candidate for beam time structure monitoring. In this contribution we present the status of the first proof of principle beam time structure measurement with LGAD sensors at S-DALINAC in normal operation mode together with future activities overview.
* J.Pietraszko, et al., Low Gain Avalanche Detectors for the HADES reaction time (T0) detector upgrade, Eur. Phys. J. A 56, 183 (2020)
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP29  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP34 New X-Rays Diagnostics at ESRF: The X-BPMs and the Halo-Monitor electron, diagnostics, SRF, vacuum 125
  • E. Buratin, K.B. Scheidt
    ESRF, Grenoble, France
  Two new X-ray diagnostics have been installed in the Front-Ends of the Storage Ring of the ESRF’s Extremely Brilliant Source (EBS) recently. Two independent optical X-BPMs at 23m distance from their bending magnet source-point are giving extremely useful additional information on the vertical beam stability in comparison to the e-BPMs data. A vertical beam Halo-monitor allows to measure permanently and quantitatively the level the electron density at large distance (1-3mm) from the beam core, in a non-destructive manner.  
poster icon Poster MOP34 [1.198 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP34  
About • Received ※ 30 August 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP37 Beam Polarization Measurements with the Revised Compton Polarimeter at ELSA polarization, electron, photon, laser 137
  • M.T. Switka, K. Desch, D. Elsner
    ELSA, Bonn, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  The Compton Polarimeter at the ELSA 3.2 GeV storage ring has been designed to measure the polarization degree of the stored electron beam by analyzing the profile of the back-scattered gamma-beam with a silicon microstrip detector. Utilizing a scattering asymmetry from interaction with circularly polarized laser light, the electron beam polarization is determined from the vertical shift of the gamma-beam’s center of gravity in respect to the handedness of the laser light. The installation of a new laser source and silicon strip detector has improved the polarimeter’s performance significantly. Additionally, the profile analysis could be enhanced by using a Pearson type peak function fit. The analyzing power was determined through the observation of the Sokolov-Ternov effect and a statistical measurement accuracy of 2 % could be obtained within 5 minutes of measurement time. The polarimeter resolves the expected spin dynamical effects occurring in the storage ring and has shown to be a robust and reliable measurement system for operation with the GaAs source for polarized electrons.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP37  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP45 A New Luminosity Monitor for the LHC Run 3 luminosity, experiment, MMI, radiation 163
  • S. Mazzoni, W. Andreazza, E. Balci, D. Belohrad, E. Bravin, N.S. Chritin, J.C. Esteban Felipe, T. Lefèvre, M. Martin Nieto, M. Palm
    CERN, Meyrin, Switzerland
  The Beam Rate of Neutrals (BRAN) is a monitor that provides a relative luminosity measurement for the four LHC experiments. BRANs are used during operations as a tool to find and optimise collision and to cross-check experiments luminosity monitors. While each LHC experiments is equipped with BRANs, in this contribution we will focus on the new monitors installed for ATLAS and CMS that will replace the current ageing gas chambers during LHC run 3. These will also serve as as prototypes for the future High Luminosity LHC monitors that will need to sustain an even higher collision rate. A description of the BRAN as well as the first results obtained during the LHC Run 3 start-up will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP45  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 23 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU2C2 The Diamond Beam Loss Monitoring System at CERN LHC and SPS injection, extraction, kicker, instrumentation 202
  • E. Calvo Giraldo, E. Effinger, M. Gonzalez Berges, J. Martínez Samblas, S. Morales Vigo, B. Salvachúa, C. Zamantzas
    CERN, Meyrin, Switzerland
  • J. Kral
    CTUP/FNSPE, Prague, Czech Republic
  The Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS) accelerators are equipped with 17 pCVD diamond based Beam Loss detectors at strategical locations where their nanosecond resolution can provide insights into the loss mechanisms and complement the information of the standard ionization chamber type detectors. They are used at the injection and extraction lines of the LHC and SPS, to analyse the injection or extraction efficiency, and to verify the timing alignment of other elements like kicker magnets. They are used at the betatron collimation region and are being also explored as detectors to analyse slow extractions. The acquisition chain was fully renovated during the second LHC long shutdown period (from December 2018 to July 2022) to provide higher resolution measurements, real-time data processing and data reduction at the source as well as to integrate seamlessly to the controls infrastructure. This paper presents the new hardware platform, the different acquisition modes implemented, the system capabilities and initial results obtained during the commissioning and operation at the beginning of the LHC’s Run 3.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU2C2 [4.414 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU2C2  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 14 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP01 Commissioning of the Libera Beam Loss Monitoring System at SPEAR3 injection, septum, storage-ring, operation 211
  • K. Tian, S. Condamoor, W.J. Corbett, N.L. Parry, J.A. Safranek, J.J. Sebek, F. Toufexis
    SLAC, Menlo Park, California, USA
  SPEAR3 is a third generation synchrotron radiation light source, which operates approximately 9 months each year with a very high reliability. The beam loss monitoring system in the storage ring has recently been upgrade to the modern Libera system from the original legacy hardware. During the initial stage of the new beam loss monitoring system deployment, it was proved to be useful for a new lattice commissioning at SPEAR3. In this paper, we will report the progress in the Libera system commissioning at SPEAR3 and present some first results.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP01  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 03 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP02 Design of High Dynamic Range Preamplifiers for a Diamond-Based Radiation Monitor System controls, FPGA, monitoring, radiation 216
  • M. Marich, S. Carrato
    University of Trieste, Trieste, Italy
  • L. Bosisio, A. Gabrielli, Y. Jin, L. Lanceri
    INFN-Trieste, Trieste, Italy
  • G. Brajnik, G. Cautero, D. Giuressi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • L. Vitale
    Università degli Studi di Trieste, Trieste, Italy
  Regardless of the different accelerator types (light sources like FELs or synchrotrons, high energy colliders), diagnostics is an essential element for both personnel and machine protection. With each update, accelerators become more complex and require an appropriate diagnostic system capable of satisfying multiple specifications, that become more stringent as complexity increases. This paper presents prototyping work towards a possible update of the readout electronics of a system based on single-crystal chemical vapor deposition (scCVD) diamond sensors, monitoring the radiation dose-rates in the interaction region of SuperKEKB, an asymmetric-energy electron-positron collider. The present readout units digitize the output signals from the radiation monitors, process them using an FPGA, and alert the accelerator control system if the radiation reaches excessive levels. The proposed updated version introduces a new design for the analog front end that overcomes its predecessor’s limits in dynamic range thanks to high-speed switches to introduce a variable gain in transimpedance preamplifiers, controlled by an ad-hoc developed FPGA firmware.  
poster icon Poster TUP02 [1.292 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP02  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP03 The Beam Loss Monitoring System after the LHC Long Shutdown 2 at CERN electron, electronics, operation, monitoring 220
  • M. Saccani, E. Effinger, W. Viganò, C. Zamantzas
    CERN, Meyrin, Switzerland
  Most of the LHC systems at CERN were updated during the Long Shutdown 2, from December 2018 to July 2022, to prepare the accelerator for High-Luminosity. The Beam Loss Monitoring system is a key part of the LHC’s instrumentation for machine protection and beam optimisation by producing continuous and reliable measurements of beam losses along the accelerator. The BLM system update during LS2 aims at providing better gateware portability to future evolutions, improving significantly the data rate in the back-end processing and the software efficiency, and adding remote command capability for the tunnel electronics. This paper first recalls the Run 1 and Run 2 BLM system achievements, then reviews the main changes brought during LS2, before focusing on the commissioning phase of Run 3 and future expectations.  
poster icon Poster TUP03 [2.871 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP03  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 29 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP04 Beam Loss Monitor for Polish Free Electron Laser (PolFEL): Design and Tests FEL, electron, radiation, vacuum 225
  • R. Kwiatkowski, R. Nietubyc, J. Szewiński, D.R. Zaloga
    NCBJ, Świerk/Otwock, Poland
  • A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
  Funding: European Regional Development Fund in the framework of the Smart Growth Operational Programme and Regional Operational Programme for Mazowieckie Voivodeship.
The Beam Loss Monitor (BLM) system is primarily used for machine protection and is especially important in the case of high energy density of accelerated beam, when such a beam could cause serious damages due to uncontrolled loss. PolFEL linear accelerator is designed with the beam parameters, which made BLM an essential system for machine protection. The design of BLM system for PolFEL is composed of several scintillation probes placed along and around the accelerator. The paper reports on design and first tests of prototype detector, which is planned to be used for PolFEL project. The prototype was tested in NCBJ and SOLARIS, using radioactive calibration samples and linear electron accelerator as a sources. We also present results of numerical investigation of radiation generated due to interaction of fast electrons with accelerator components.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP04  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 19 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP15 New Gas Target Design for the HL-LHC Beam Gas Vertex Profile Monitor impedance, target, radiation, injection 252
  • H. Guerin, R. De Maria, R. Kersevan, B. Kolbinger, T. Lefèvre, M.T. Ramos Garcia, B. Salvant, G. Schneider, J.W. Storey
    CERN, Meyrin, Switzerland
  • S.M. Gibson, H. Guerin
    Royal Holloway, University of London, Surrey, United Kingdom
  The Beam Gas Vertex (BGV) instrument is a novel non-invasive transverse beam profile monitor under development for the High Luminosity Upgrade of the Large Hadron Collider (HL-LHC). Its principle is based on the reconstruction of the tracks and vertices issued from beam-gas inelastic hadronic interactions. The instrument is currently in the design phase, and will consist of a gas target, a forward tracking detector installed outside the beam vacuum chamber and computing resources dedicated to event reconstruction. The transverse beam profile image will then be inferred from the spatial distribution of the reconstructed vertices. With this method, the BGV should be able to provide bunch-by-bunch measurement of the beam size, together with a beam profile image throughout the whole LHC energy cycle, and independently of the beam intensity. This contribution describes the design of the gas target system and of the gas tank of the future instrument.  
poster icon Poster TUP15 [1.080 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP15  
About • Received ※ 06 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 12 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP18 High-Resolution Interferometric Beam-Size Monitor For Low-Intensity Beams photon, plasma, wakefield, synchrotron 265
  • B. Alberdi-Esuain, J.-G. Hwang, T. Kamps
    HZB, Berlin, Germany
  • T. Kamps
    HU Berlin, Berlin, Germany
  Plasma-based accelerator technology is reaching a mature state, where applications of the beam for medical sciences, imaging, or as an injector for a future large-scale accelerator-driven light source become feasible. Particularly, the requirements for beam injection into a storage-ring-based light source are very strict with regards to beam quality and reliability. A non-invasive diagnostics greatly helps to reduce the commissioning time of the machine. We present a device suitable for online, non-destructive monitoring of the transverse spot size of the injected beam. In order to measure lateral beam sizes with a few-micrometer resolution, the technique uses an interferometric regime of coherent synchrotron radiation that is enabled by a sub-femtosecond short bunch-length. Simulations of the photon flux and the retrieval of the beam spot-size are performed for different bandwidth filters in order to define the bandwidth acceptance. Results show the potential of the proposed system that achieves precise retrieval of the complex degree of coherence at an extremely low photon intensity similar to those expected towards the plasma-acceleration injectors.  
poster icon Poster TUP18 [9.961 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP18  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 03 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP29 ZnO(In) Scintillation Light Spectra Investigation for Heavy Ion Detector Application radiation, heavy-ion, vacuum, proton 294
  • M. Saifulin, C. Trautmann
    TU Darmstadt, Darmstadt, Germany
  • P. Boutachkov, M. Saifulin, C. Trautmann, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • E.I. Gorokhova
    GOI, St Petersburg, Russia
  • P. Rodnyi, I.D. Venevtsev
    SPbPU, St. Petersburg, Russia
  Funding: DLR financed this research within the framework of the ERA. Net RUS Plus Project RUSST2017-051
ZnO-based ceramics are known as promising scintillators exhibiting light emission in the ultraviolet (UV) spectral region (~390 nm) and ultrafast decay times (<1 ns). They are of great interest for applications in scintillation counters and screens at high-energy heavy ion accelerators. In this contribution, the deterioration of scintillating properties of ZnO-based ceramics subjected to heavy ion exposure at high doses is investigated. The scintillation light spectra of ZnO(In) as a function of fluence for 4.8 MeV/u 48Ca and 197Au ions were studied. We observed that the deterioration of the scintillation intensity with increasing fluence follows the Birks-Black model.
* The results presented in this contribution are based on the work performed before the 24th of February, 2022.
** (corresponding author)
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP29  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 01 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP31 The Cryogenic Current Comparator at CRYRING@ESR cryogenics, diagnostics, dipole, storage-ring 300
  • L. Crescimbeni, D.M. Haider, A. Reiter, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • F. Schmidl
    FSU Jena, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
  Funding: Work supported by the BMBF under contract No. 05P21SJRB1.
The Cryogenic Current Comparator (CCC) at the heavy-ion storage ring CRYRING@ESR at GSI provides a calibrated non-destructive measurement of beam current with a resolution of 10 nA or better. With traditional diagnostics in storage rings or transfer lines a non-interceptive absolute intensity measurement of weak ion beams (< 1 µA) is already challenging for bunched beams and virtually impossible for coasting beams. Therefore, at these currents the CCC is the only diagnostics instrumentation that gives reliable values for the beam intensity independently of the measured ion species and without the need for tedious calibration procedures. Herein, after a brief review of the diagnostic setup, an overview of the operation of the CCC with different stored ion beams at CRYRING is presented. The current reading of the CCC is compared to the intensity signal of various standard instrumentations including a Parametric Current Transformer (PCT), an Ionization Profile Monitor (IPM) and the Beam Position Monitors (BPMs). It was shown that the CCC is a reliable instrument to monitor changes of the beam current in the range of nA.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP31  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 19 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU3C2 Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators laser, proton, experiment, HOM 352
  • C. Salgado-López, A. Curcio, G. Gatti, J.L. Henares, J. Imanol Apiñaniz, J.A.P. Pérez-Hernández, L. Volpe, D. de Luis
    CLPU, Villamayor, Spain
  Funding: LASERLAB-EUROPE V (Grant Agreement No. 871124, EU Horizon 2020). IMPULSE (Grant Agreement No. 871161, EU Horizon 2020). Equipment Grant No. EQC2018-005230-P, Junta de CyL (Grant No. CLP263P20).
Laser-plasma driven accelerators have become reliable sources of low-emittance, broadband and multi-species ion sources, with cut-off energies above the MeV-level*. We report on the development, construction, and experimental test of an angle resolved Thomson parabola spectrometer for laser-accelerated multi-MeV ion beams able to distinguish between ionic species with different q/m ratio. The angular resolving power, which is achieved due to an array of entrance pinholes, can be simply adjusted by modifying the geometry of the experiment and/or the pinhole array itself. The analysis procedure allows for different ion traces to cross on the detector plane, which greatly enhances the flexibility and capabilities of the detector. A full characterization of the TP magnetic field has been implemented into a relativistic code developed for the trajectory calculation of each beamlet. High repetition rate compatibility is guaranteed by the use of a MCP as active particle detector. We describe the first test of the spectrometer at the 1PW VEGA 3 laser facility at CLPU, Salamanca (Spain), where up to 15MeV protons and carbon ions from a 3-micron laser-irradiated metallic foil are detected**.
*A. Macchi et. al., Rev. Mod. Phys. 85, 751 (2013)
**C. Salgado et. al., Sensors 22, 3239 (2022).
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU3C2 [2.831 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3C2  
About • Received ※ 01 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 25 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU3C3 LINAC4 Laser Profile and Emittance Meter Commissioning laser, emittance, linac, electron 357
  • A. Goldblatt, O.O. Andreassen, T. Hofmann, F. Roncarolo, J. Tagg
    CERN, Meyrin, Switzerland
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  The LINAC4 is now equipped with two laser profile and emittance meters, basically non destructive and not limited by beam power density. A pulsed laser is transported through fibres and focused into the 160 MeV H beam. Its interaction with the H ions detaches electrons that are collected by an electron-multiplier, while the resultingH0 particles, after being separated from the main H beam by a dipole magnet, are recorded by a diamond strip detector, few meters away from the interaction point. The emittance and profile are reconstructed from the laser step by step scan of the beam. After several years of feasibility tests and prototyping, this paper will present all details about the final HW and SW implementation and the 2022 experimental results.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU3C3 [1.035 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3C3  
About • Received ※ 09 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU3C4 A High Performance Scintillator Ion Beam Monitoring System radiation, photon, target, experiment 362
  • D.S. Levin, C. Ferretti, A. Kaipainen, N.A. Ristow
    University of Michigan, Ann Arbor, Michigan, USA
  • P.S. Friedman
    Integrated Sensors, LLC, Ottawa Hills, Ohio, USA
  • T.N. Ginter
    NSCL, East Lansing, Michigan, USA
  Funding: This work is funded by SBIR Phase-II Award No. DE-SC0019597, DOE Office of Science to Integrated Sensors, LLC.
A high performance Scintillator Ion Beam Monitor (SBM)provides diagnostics across a range of isotopes, energies, and intensities. It uses a machine-vision camera and a magazine of thin scintillators, movable into the beam without breaking vacuum. Two proprietary scintillators are used: a semicrystalline polymer material (PM) tested over a thickness range of ~1 to 190 µm. The PM yields stronger signals than other commercial plastic scintillators tested and is radiation damage resistant; a 100-400 µm opaque wafer consisting of inorganic crystals in a polymer hybrid matrix (HM). Both PM and HM are non-hygroscopic and produce minimal secondary reflections. HM produces significantly larger signals than CsI with excellent radiation damage resistance. The SBM was staged at the FRIB (East Lansing) ion beam, demonstrating real-time beam profile and rate analysis spanning more than five orders-of-magnitude including visualization of single ion signals with ~10-20 µm spatial resolution. It is superior to and may replace the reference detectors: Faraday cup, silicon strips and a CCD camera beam imager. A proton test beam extended the dynamic range by four orders-of-magnitude.
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TU3C4 [13.732 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3C4  
About • Received ※ 31 August 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 08 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP04 Dual channel FMC High-Voltage Supply high-voltage, controls, interface, power-supply 383
  • W. Viganò, J. Emery, M. Saccani
    CERN, Meyrin, Switzerland
  The Beam Loss Monitoring (BLM) detectors and electronics are installed along the CERN accelerators to provide measurements of the beam loss as well as protection from them when excessive. Majority of the BLM detector types require voltage biasing up to 2000VDC with the possibility to generate voltage modulation patterns to verify the connection chain of the detectors to the front-ends. Currently, the power supply solution consists of COTS large format power supplies with additional custom electronics and various interconnections to provide monitoring and remote control. For this reason, a market search has been done to identify a high reliability module suitable for dedicated BLM installations composed by a few detectors. The outcome of the market search has justified the need to design a low cost custom board, compatible with the CERN infrastructure and different detector types, as well as allow easy customization to cover various installation architectures and voltage range needs. Main characteristics could be summarized with the following points: completely remote controlled and autonomous system, common hardware for different applications, only need to change DC\DC converter.
Other characteristics: few more components for different application and make a model smaller than what is currently used as high voltage power supplies.
poster icon Poster WEP04 [1.216 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP04  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 05 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP06 An LHC Protection System Based on Fast Beam Intensity Drops operation, Windows, FPGA, emittance 387
  • M. Gąsior, T.E. Levens
    CERN, Meyrin, Switzerland
  The Large Hadron Collider (LHC) is protected against potentially dangerous beam losses by a distributed system based on some four thousand beam loss monitors. To provide an additional level of safety, the LHC has been equipped with a system to detect fast beam intensity drops and trigger a beam dump for potentially dangerous rates. This paper describes the architecture of the system and its signal processing, optimized to cope with dump thresholds in the order of 0.01 % of the circulating beam intensity. The performance of the installed system is presented based upon beam measurements.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP06  
About • Received ※ 10 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 22 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP15 XFEL Photon Pulse Measurement Using an All-Carbon Diamond Detector FEL, photon, diagnostics, experiment 416
  • C. Bloomer, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • W. Freund, J. Grünert, J. Liu
    EuXFEL, Schenefeld, Germany
  • M.E. Newton
    University of Warwick, Coventry, United Kingdom
  The European XFEL can generate extremely intense, ultra-short X-ray pulses at MHz repetition rates. Single-crystal CVD diamond detectors have been used to transparently measure the photon beam position and pulse intensity. The diamond itself can withstand the power of the beam, but the surface electrodes can be damaged since a single pulse can already exceed the damage threshold of the electrode material. Presented in this work are pulse intensity and position measurements obtained at the European XFEL using a new type of all-carbon single-crystal diamond detector developed at Diamond Light Source. Instead of traditional surface metallisation, the detector uses laser-written graphitic electrodes buried within the bulk diamond. There is no metallisation in the XFEL X-ray beam path that could be damaged by the beam. The results obtained from a prototype detector are presented, capable of measuring the intensity and 1-dimensional X-ray beam position of individual XFEL pulses. These successful measurements demonstrate the feasibility of all-carbon diagnostic detectors for XFEL use.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP15  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP22 Experimental Investigation of Gold Coated Tungsten Wires Emissivity for Applications in Particle Accelerators experiment, vacuum, operation, controls 438
  • A. Navarro Fernandez, M. Martin Nieto, F. Roncarolo
    CERN, Meyrin, Switzerland
  The operation of wire grids and wire scanners as beam profile monitors can be heavily affected, both in terms of measurement accuracy and wire integrity, by the thermal response of the wires to the energy deposited by the charged particles. Accurate measurements of material emissivity are crucial, as Radiative Cooling represent the most relevant cooling process. In this work, we present a method for emissivity measurements of gold-coated tungsten wires based on calorimetric techniques. The dedicated electrical setup allowed allowed transient and steady state measurements for temperatures up to 2000 K. A theoretical description of the measurement technique will be followed up by the electrical set up description and a detailed discussion about the measured results and uncertainties.  
poster icon Poster WEP22 [1.586 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP22  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP25 Installation and Commissioning of the Pulsed Optical Timing System Extension timing, controls, polarization, laser 451
  • F. Rossi, M. Ferianis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  At the FERMI FEL user facility, a fully optical timing system has been operated, to synchronize it, since the start of machine commissioning, back in 2009. In the past years the system has been progressively extended to support more clients. The latest upgrade is focusing on the pulsed subsystem which provides the phase reference to remote lasers and the bunch arrival monitor diagnostic stations. In origin the pulsed subsystem had a capacity to feed simultaneously six stabilized fiber links. The upgrade to the original layout makes it possible to install up to eight new additional links. Here we will describe the new setup and the results achieved in terms of short- and long-term stability.  
poster icon Poster WEP25 [3.843 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP25  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 08 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP29 Optimization Study of Beam Position and Angular Jitter Independent Bunch Length Monitor for Awake Run 2 radiation, electron, polarization, target 465
  • C. Davut
    The University of Manchester, Manchester, United Kingdom
  • Ö. Apsimon
    The University of Liverpool, Liverpool, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • T. Lefèvre, S. Mazzoni
    CERN, Meyrin, Switzerland
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  In this paper, a study using the Polarization Current Approach (PCA) model is performed to optimize the design of a short bunch length monitor using two dielectric radiators that produce coherent Cherenkov Diffraction Radiation (ChDR). The electromagnetic power emitted from each radiator is measuring a different part of the bunch spectrum using Schottky diodes. For various bunch lengths, the coherent ChDR spectrums are calculated to find the most suitable frequency bands for the detection system. ChDR intensities measured by each detector are estimated for different impact parameters to explore the dependence of bunch length monitor on beam position and angular jitter. It is found that, in the present configuration, the effects of beam position and angular jitter are negligibly small for bunch length measurement.
* Shevelev, M. V., & Konkov, A. S. (2014). Journal of Experimental and Theoretical Physics, 118(4), 501-511.
** Curcio, A. et al. (2020). Physical Review Accelerators and Beams, 23(2), 022802.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP29  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 09 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP36 Conceptual Design of the Transverse Multi-Bunch Feedback for the Synchrotron Radiation Source PETRA IV feedback, kicker, damping, synchrotron 488
  • S. Jabłoński, H.T. Duhme, B. Dursun, J. Klute, S.H. Mirza, S. Pfeiffer, H. Schlarb
    DESY, Hamburg, Germany
  PETRA IV will be a new, fourth-generation, high-brilliance synchrotron radiation source in the hard X-ray range. To keep the emittance low at high beam current an active feedback system to damp transverse multi-bunch instabilities is required. The particular challenge to the system is the very low-noise, while maintaining high bandwidth, which is defined by the 2 ns bunch spacing. In this paper, we present the conceptual design of the transverse multi-bunch feedback (T-MBFB) system and technical challenges to fulfill the performance require-ments. An overview is given on the hardware and the method for detecting and damping the coupled-bunch oscillations. Using modern high-speed ADCs enables direct sampling of pulses from beam pick-ups, which removes the necessity for down-converters. Powerful digital signal processing allows not only for the effective feedback implementation, but also for developing versa-tile tools for the machine diagnostics.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP36  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 December 2022 — Issue date ※ 12 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP42 Application of Machine Learning towards Particle Counting and Identification Windows, network, extraction, experiment 508
  • S.E. Engel
    University of Essex, Physics Centre, Colchester, United Kingdom
  • P. Boutachkov, R. Singh
    GSI, Darmstadt, Germany
  An exploration into the application of three machine learning (ML) approaches to identify and separate events in the detectors used for particle counting at the GSI Helmholtz Centre for Heavy Ion Research. A convolutional neural network (CNN), a shape-based template matching algorithm (STMF) and Peak Property-based Counting Algorithm (PPCA) were developed to accurately count the number of particles without domain-specific knowledge required to run the currently used algorithm. The three domain-agnostic ML algorithms are based on data from scintillation counters commonly used in beam instrumentation and represent proof-of-work for an automated particle counting system. The algorithms were trained on a labelled set of over 150 000 experimental particle data. The results of the three classification approaches were compared to find a solution that best mitigates the effects of particle pile-ups. The two best-achieving algorithms were the CNN and PPCA, achieving an accuracy of 99.8\%.
This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730.
poster icon Poster WEP42 [1.370 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP42  
About • Received ※ 11 September 2022 — Revised ※ 25 October 2022 — Accepted ※ 01 December 2022 — Issue date ※ 08 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WE3I1 Novel Fast Radiation-Hard Scintillation Detectors for Ion Beam Diagnostics radiation, heavy-ion, site, experiment 515
  • P. Boutachkov, M. Saifulin, C. Trautmann, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • E.I. Gorokhova
    GOI, St Petersburg, Russia
  • P. Rodnyi, I.D. Venevtsev
    SPbPU, St. Petersburg, Russia
  Novel radiation-hard scintillators were developed in the last years based on indium-doped ZnO ceramic with an extremely short decay time below a ns. Fast counting detectors and fast screens were considered as potential beam diagnostic applications of this material. At the GSI/FAIR facility, scintillation detectors are commonly used for measuring the intensity and detailed time structure of relativistic heavy ion beams. The scintillating material is inserted directly into the beam path. Signals from individual ions are counted, providing systematic-error-free beam intensity information. Standard scintillators require frequent maintenance due to radiation damage. To address this limitation, a large area ZnO radiation-hard detector was developed. The prototype detector operates at orders of magnitude higher irradiation levels, at higher counting rates and has better time resolution compared to a plastic scintillator. In addition, the novel detector material opens the possibilities for applications in other beam diagnostic systems, for example, scintillation screens for transverse profile measurements. Therefore, ZnO scintillation ceramics are of general interest for beam diagnostics.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides WE3I1 [15.046 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3I1  
About • Received ※ 24 September 2022 — Revised ※ 24 October 2022 — Accepted ※ 25 October 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WE3C2 Time-Resolved Proton Beam Dosimetry for Ultra-High Dose-Rate Cancer Therapy (FLASH) cyclotron, proton, radiation, photon 519
  • P. Casolaro, S. Braccini, G. Dellepiane, A. Gottstein, I. Mateu, P. Scampoli
    AEC, Bern, Switzerland
  • P. Scampoli
    Naples University Federico II, Napoli, Italy
  Funding: This project was partially funded by the Bern Center for Precision Medicine (BCPM) of the University of Bern, and by the Swiss National Science Foundation (SNSF) [Grant: CRSII5180352]
A new radiotherapy modality, known as FLASH, is a potential breakthrough in cancer care as it features a reduced damage to healthy tissues, resulting in the enhancement of the clinical benefit. FLASH irradiations are characterized by ultra-high dose-rates (>40 Gy/s) delivered in fractions of a second. This represents a challenge in terms of beam diagnostics and dosimetry, as detectors used in conventional radiotherapy saturate or they are too slow for the FLASH regime. In view of the FLASH clinical translation, the development of new dosimeters is fundamental. Along this line, a research project is ongoing at the University of Bern aiming at setting-up new beam monitors and dosimeters for FLASH. The proposed detection system features millimeter scintillators coupled to optical fibers, transporting light pulses to a fast photodetector, readout by high bandwidth digitizers. First prototypes were exposed to the 18 MeV proton beam at the Bern medical cyclotron. The new detectors have been found to be linear in the range up to 780 Gy/s, with a maximum time resolution of 100 ns. These characteristics are promising for the development of a new class of detectors for FLASH radiotherapy.
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C2 [5.378 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C2  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 23 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WE3C3 Fast Spill Monitor Studies for the SPS Fixed Target Beams proton, extraction, photon, target 522
  • F. Roncarolo, P.A. Arrutia Sota, D. Belohrad, E. Calvo Giraldo, E. Effinger, M.A. Fraser, V. Kain, M. Martin Nieto, S. Mazzoni, I. Ortega Ruiz, J. Tan, F.M. Velotti, C. Zamantzas
    CERN, Meyrin, Switzerland
  • M. Bergamaschi
    MPI-P, München, Germany
  At the CERN Super Proton Synchrotron (SPS) the proton beam is supplied to the fixed target experiments in the North Area facility (NA) via a slow extraction process, taking place at 400 GeV. The monitoring of the spill quality during the extraction, lasting 4.8 seconds with the present SPS setup, is of high interest for minimising beam losses and providing the users with uniform proton-on-target rates. The monitor development challenges include the need for detecting, sampling, processing and publishing the data at rates ranging from few hundred Hz to support the present operation to several hundreds of MHz to serve future experiments proposed within the Physics Beyond Collider (PBC) programme. This paper will give an overview of the ongoing studies for optimizing the existing monitors performances and of the R&D dedicated to future developments. Different techniques are being explored, from Secondary Emission Monitors to Optical Transition Radiation (OTR), Gas Scintillation and Cherenkov detectors. Expected ultimate limitations from the various methods will be presented, together with 2022 experimental results, for example with a recently refurbished OTR detector.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C3 [2.339 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C3  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 26 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TH2C2 Upgraded CMS Fast Beam Condition Monitor for LHC Run 3 Online Luminosity and Beam Induced Background Measurements luminosity, background, MMI, electron 540
  • J.M. Wańczyk
    CERN, Meyrin, Switzerland
  The fast Beam Condition Monitor (BCM1F) for the CMS experiment at the LHC was upgraded for precision luminosity measurement in the demanding conditions foreseen for LHC Run3. BCM1F has been rebuilt with new silicon diodes, produced on the CMS Phase 2 Outer Tracker PS silicon wafers. The mechanical structure was adapted to include a 3D printed titanium circuit for active cooling of BCM1F sensors. The assembly and qualification of the detector quadrants were followed by the integration with Pixel Luminosity Telescope and Beam Conditions Monitor for Losses on a common carbon fibre carriage. This carriage was installed inside the CMS behind the Pixel detector, 1.9 m from the Interaction Point. BCM1F will provide a real-time luminosity measurement as well as a measurement of the beam-induced background, by exploiting the arrival time information of the hits with a sub-bunch crossing precision. Moreover, regular beam overlap scans at CMS were introduced during Run 2, enabling an independent and non-destructive transverse profile measurement for LHC Operators. The paper describes the improved BCM1F detector design, its commissioning and performance during the beginning of Run 3 operation.  
video icon
  please see instructions how to view/control embeded videos  
slides icon Slides TH2C2 [15.616 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TH2C2  
About • Received ※ 07 September 2022 — Revised ※ 08 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 07 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)