Keyword: proton
Paper Title Other Keywords Page
MOP07 Beam Instrumentation Performance During Commissioning of the ESS RFQ, MEBT and DTL DTL, MMI, MEBT, linac 32
 
  • T.J. Shea, R.A. Baron, C.S. Derrez, E.M. Donegani, V. Grishin, H. Hassanzadegan, I. Kittelmann, H. Kocevar, N. Milas, D. Noll, H.A. Silva, R. Tarkeshian, C.A. Thomas
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Zamudio, Spain
  • M. Ferianis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • T. Papaevangelou, L. Seguí
    CEA-IRFU, Gif-sur-Yvette, France
 
  In late 2021 through mid 2022, the first protons were accelerated and transported through the European Spallation Source (ESS) Radio Frequency Quadrupole and Medium Energy Transport line at 3.6 MeV, and finally through the first Drift Tube Linac tank at 21 MeV. To enable these achievements, the following beam instrumentation systems were deployed: Ion Source power supply monitors, beam chopping systems, Faraday Cups, Beam Current Monitors (BCM) and Beam Position Monitors (BPM) that also measured phase. Additional systems were deployed for dedicated studies, including Wire Scanners, a slit and grid Emittance Measurement Unit, neutron Beam Loss Monitors and fast BCM and BPM systems. The instrumentation deployment is the culmination of efforts by a partnership of the ESS beam diagnostics section, multiple ESS groups and institutes across the globe. This paper summarizes the beam tests that characterized the performance of the instrumentation systems and verified the achievement of commissioning goals.  
poster icon Poster MOP07 [5.388 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP07  
About • Received ※ 30 August 2022 — Accepted ※ 15 September 2022 — Issue date ※ 07 November 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP19 Commissioning of the Renewed Long Radial Probe in PSI Ring Cyclotron cyclotron, cavity, injection, MMI 76
 
  • M. Sapinski, R. Dölling, M. Rohrer
    PSI, Villigen PSI, Switzerland
 
  PSI’s Ring cyclotron is a high intensity proton cyclotron producing 2 mA beam. The beam is accelerated over about 180 turns from 72 MeV to 590 MeV. The Long Radial Probe, called RRL, scans the beam along the range of beam radii from 2048 mm to 4480 mm. A replacement for the RRL has been developed in the last years*. The recently installed new probe drives three carbon fibers with 30 ’m diameter through the turns and measures secondary electron currents, providing information on horizontal and vertical beam shape. Additional drives are available for a later extension of measurement capabilities. The main challenges are a coupling of the device elements to RF fields leaking from the accelerating cavities, plasma interfering with the measured signal and performance of the carbon fibers in harsh environment with high intensity beam. We report on commissioning of the probe with RF and beam and discuss measurement results.
* doi:10.18429/JACoW-IBIC2020-WEPP33
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP19  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 24 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP21 First Results of PEPITES, A New Transparent Profiler Based on Secondary Electrons Emission for Charged Particle Beams electron, radiation, detector, vacuum 80
 
  • C. Thiebaux, L. Bernardi, F. Gastaldi, Y. Geerebaert, R. Guillaumat, F. Magniette, P. Manigot, M. Verderi
    LLR, Palaiseau, France
  • É. Delagnes, F.T. Gebreyohannes, O. Gevin
    CEA-IRFU, Gif-sur-Yvette, France
  • F. Haddad, N. Servagent
    SUBATECH, Nantes, France
  • F. Haddad, C. Koumeir, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This study is supported by two programs of the Agence Nationale de la Recherche, ANR-17-CE31-0015 and ANR-11-EQPX-0004.
The PEPITES project* consists of a brand new operational prototype of an ultra-thin, radiation-resistant profiler capable of continuous operation on mid-energy (O(100 MeV)) charged particle accelerators. Secondary electron emission (SEE) is used for the signal because it only requires a small amount of material (10 nm); very linear, it also offers good dynamics. The lateral beam profile is sampled using segmented electrodes, constructed by thin film methods. Gold strips, as thin as the electrical conductivity allows (~ 50 nm), are deposited on an insulating substrate as thin as possible. While crossing the gold, the beam ejects the electrons by SEE, the current thus formed in each strip allows the sampling. SEE was characterized at ARRONAX with 68 MeV proton beams and at medical energies at CPO**. Electrodes were subjected to doses of up to 109 Gy without showing significant degradation. A demonstrator with dedicated electronics (CEA) is installed at ARRONAX and will be used routinely with proton beams of 17-68 MeV for intensities of 100fA to 100nA. An overview of the design and first measurements will be presented, and system performances will be assessed.
*LLR, ARRONAX cyclotron and CEA
**Orsay Protontherapy Center (Institut Curie)
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP21  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP22 Development of New Beam Position Detectors for the NA61/SHINE Experiment detector, vacuum, experiment, target 84
 
  • M.U. Urbaniak, Y. Balkova, S.K. Kowalski, S. Puławski, K.W. Wójcik
    University of Silesia in Katowice, Katowice, Poland
 
  NA61/SHINE is a fixed-target experiment located at CERN Super Proton Synchrotron. The development of new beam position detectors is part of the ongoing upgrade of the detector system. Two types of detectors have been manufactured and tested. The first one is a scintillating fibers detector with photomultiplier as a readout. The scintillating fibers detector consists of two ribbons, which are arranged perpendicularly to each other. Each ribbon is made of two layers of 250 µm diameter fibers. The grouping method was used, which allows using of a single multichannel photomultiplier for one detector. The second type of detector is based on the single-sided silicon strip detector (SSD). In this project, Si strips produced by Hamamatsu (S13804) were used, where the pitch has a width equal to 190 um. The developed detectors must meet several requirements: should work efficiently with proton and lead beams with beam intensity on the level of 100 kHz, the detector’s material on the beamline should be minimized, the detectors should be able to determine the position of X and Y hit of each beam particle with maximum possible accuracy. During my speech I will present the results of our work.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP22  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP24 Test of a Prototype for Modular Profile and Position Monitors in the Shielding of the 590 MeV Beam Line at HIPA simulation, pick-up, HOM, cyclotron 92
 
  • R. Dölling, F. Marcellini, M. Sapinski
    PSI, Villigen PSI, Switzerland
 
  A new generation of monitor plugs is under develop-ment as spares for the ageing wire profile monitors and beam position monitors inserted into massive shielding in the target regions of the 590 MeV proton beam line at HIPA. A prototype was installed recently in the beam line to the ultra-cold neutron source UCN, to test the perfor-mance of wire monitor, BPM and modular mechanical design in a low-radiation environment. We report on first measurements with beam.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP24  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP33 Beam Current Measurements at the Nano-Ampere Level Using a Current Transformer experiment, electron, electronics, controls 121
 
  • M. Xiao
    UMCG, Groningen, The Netherlands
  • S. Brandenburg, M.J. Goethem
    PARTREC, Groningen, The Netherlands
  • T. Delaviere, L. Dupuy, F. Stulle
    BERGOZ Instrumentation, Saint Genis Pouilly, France
 
  In conventional proton therapy (PT) typical beam currents are of the order of 1 nA. At these currents dose monitoring is reliably achieved with an ionization chamber. However, at the very high dose rates used in FLASH irradiations (employing beam currents >100 nA) ionization chambers will exhibit large intensity dependent recombination effects and cannot be used. A possible solution is a current transformer. Here we report on the performance of the LC-CWCT (Bergoz Instrumentation, France) which has been developed to push noise floor of such non-destructive current measurement systems into the nano-ampere range. We present first beam current measurements at the PARTREC cyclotron (Netherlands). Beam currents measured by the LC-CWCT and a Faraday Cup were shown to linearly correlate up to the maximum intensity of 400 nA used in the measurements. For pulsed beams, charge measured by the LC-CWCT linearly correlated with pulse length over the measurement range from 50 to 1000 µs. Measurement noise as low as 2.8 nA was achieved. The results confirm that the LC-CWCT has the potential to be applied in FLASH PT for accurate determination of beam current and macro pulse charge.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP33  
About • Received ※ 05 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 14 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1I1 Electro-Optical BPM Development for High Luminosity LHC pick-up, site, GUI, laser 181
 
  • S.M. Gibson, A. Arteche
    Royal Holloway, University of London, Surrey, United Kingdom
  • T. Lefèvre, T.E. Levens
    CERN, Meyrin, Switzerland
 
  An Electro-Optic Beam Position Monitor (EO-BPM) is being developed as a high-frequency (up to 10 GHz) diagnostic for crabbing and Head-Tail intra-bunch detection at the HL-LHC. Following an earlier prototype at the SPS that demonstrated single-pickup signals, an upgraded design of an interferometric EO-BPM has been beam-tested at the HiRadMat facility for validation and characterisation studies. In the new design, the fibre-coupled Mach-Zehnder interferometer arms are modulated by lithium niobate waveguides integrated in an upgraded opto-mechanical arrangement that has been developed to produce a highly magnified image field replica of the passing Coulomb field. A new detection technique that is directly sensitive to the interferometric optical difference signal from opposite EO buttons has been applied to measure single-shot bunches for the first time. A transverse resolution study over a ±20 mm range at 3 GHz bandwidth produced the first successful electro-optic bunch-by-bunch position measurement at the HiRadMat in-air extraction line. The results of this campaign show promise for an in-vacuum design that is in production for beam tests at the SPS during Run-3 of the LHC.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU1I1 [26.286 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU1I1  
About • Received ※ 15 September 2022 — Revised ※ 17 September 2022 — Accepted ※ 25 October 2022 — Issue date ※ 30 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP29 ZnO(In) Scintillation Light Spectra Investigation for Heavy Ion Detector Application radiation, heavy-ion, detector, vacuum 294
 
  • M. Saifulin, C. Trautmann
    TU Darmstadt, Darmstadt, Germany
  • P. Boutachkov, M. Saifulin, C. Trautmann, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • E.I. Gorokhova
    GOI, St Petersburg, Russia
  • P. Rodnyi, I.D. Venevtsev
    SPbPU, St. Petersburg, Russia
 
  Funding: DLR financed this research within the framework of the ERA. Net RUS Plus Project RUSST2017-051
ZnO-based ceramics are known as promising scintillators exhibiting light emission in the ultraviolet (UV) spectral region (~390 nm) and ultrafast decay times (<1 ns). They are of great interest for applications in scintillation counters and screens at high-energy heavy ion accelerators. In this contribution, the deterioration of scintillating properties of ZnO-based ceramics subjected to heavy ion exposure at high doses is investigated. The scintillation light spectra of ZnO(In) as a function of fluence for 4.8 MeV/u 48Ca and 197Au ions were studied. We observed that the deterioration of the scintillation intensity with increasing fluence follows the Birks-Black model.
* The results presented in this contribution are based on the work performed before the 24th of February, 2022.
** m.saifulin@gsi.de (corresponding author)
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP29  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 01 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP30 Beam Intensity Measurement in ELENA Using Orbit Pick-Ups simulation, feedback, antiproton, pick-up 296
 
  • O. Marqversen, D. Alves
    CERN, Meyrin, Switzerland
 
  A bunched beam intensity measurement system for the CERN Extra Low ENergy Antiproton (ELENA) ring, using a cylindrical shoe-box electrostatic pick-up from the existing orbit system [1], is presented. The system has been developed to measure very challenging beam cur-rents, as low as 200nA corresponding to intensities of the order of 107 antiprotons circulating with a relativistic beta of the order of 10-2. In this work we derive and show that the turn-by-turn beam intensity is proportional to the baseline of the sum signal and that, despite the AC-coupling of the system, the installed front-end electronics, based on a charge amplifier, not only guarantees the preservation of the bunch shape (up to a few tens of MHz), but also allows for an absolute calibration of the system. In addition, the linearity of the intensity measurements and their inde-pendence with respect to average beam position is evalu-ated using a standard electromagnetic simulation tool. Finally, experimental measurements throughout typical antiproton deceleration cycles are presented and their accuracy and precision are discussed.  
poster icon Poster TUP30 [1.102 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP30  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 01 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU3C2 Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators laser, detector, experiment, HOM 352
 
  • C. Salgado-López, A. Curcio, G. Gatti, J.L. Henares, J. Imanol Apiñaniz, J.A.P. Pérez-Hernández, L. Volpe, D. de Luis
    CLPU, Villamayor, Spain
 
  Funding: LASERLAB-EUROPE V (Grant Agreement No. 871124, EU Horizon 2020). IMPULSE (Grant Agreement No. 871161, EU Horizon 2020). Equipment Grant No. EQC2018-005230-P, Junta de CyL (Grant No. CLP263P20).
Laser-plasma driven accelerators have become reliable sources of low-emittance, broadband and multi-species ion sources, with cut-off energies above the MeV-level*. We report on the development, construction, and experimental test of an angle resolved Thomson parabola spectrometer for laser-accelerated multi-MeV ion beams able to distinguish between ionic species with different q/m ratio. The angular resolving power, which is achieved due to an array of entrance pinholes, can be simply adjusted by modifying the geometry of the experiment and/or the pinhole array itself. The analysis procedure allows for different ion traces to cross on the detector plane, which greatly enhances the flexibility and capabilities of the detector. A full characterization of the TP magnetic field has been implemented into a relativistic code developed for the trajectory calculation of each beamlet. High repetition rate compatibility is guaranteed by the use of a MCP as active particle detector. We describe the first test of the spectrometer at the 1PW VEGA 3 laser facility at CLPU, Salamanca (Spain), where up to 15MeV protons and carbon ions from a 3-micron laser-irradiated metallic foil are detected**.
*A. Macchi et. al., Rev. Mod. Phys. 85, 751 (2013)
**C. Salgado et. al., Sensors 22, 3239 (2022).
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU3C2 [2.831 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TU3C2  
About • Received ※ 01 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 25 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP17 Electron Emission (SEM) Grids for the FAIR Proton Linac linac, electron, diagnostics, experiment 426
 
  • J. Herranz
    Proactive Research and Development, Sabadell, Spain
  • I. Bustinduy, .A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
  • P. Forck, T. Sieber
    GSI, Darmstadt, Germany
  • A. Navarro Fernandez
    CERN, Meyrin, Switzerland
 
  New SEM-Grid has been developed for FAIR Proton Linac, the instrument consists of 2 harps fixed together in an orthogonal way. This SEM-Grid will provide higher resolution and accuracy measurements as each harp consists of 64 tungsten wires 100 micro-meter in diameter and 0.5 mm pitch. Each wire is fixed to a ceramic PCB with an innovative dynamic stretching system, this system assures wire straightness under typical thermal expansion due to beam heat deposition. Electric field distribution has been performed, 3 main parameters have been optimized, wires distribution, quantity of polarization electrodes and distance between electrodes and wires. The design and production of the SEM-Grids have been performed by the company Proactive R&D that has count on the expertise of ESS-Bilbao to define safe operation limits and signal estimation by means of a code developed specifically for this type of calculations. Preliminary validations of the first prototypes shown good values of electric field behaviour signal. After additional beam test validations to be performed on June 2022, final series of the SEM-Grid will be produced and installed on FAIR proton LINAC.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP17  
About • Received ※ 07 September 2022 — Revised ※ 15 September 2022 — Accepted ※ 18 September 2022 — Issue date ※ 22 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP32 Secondary Emission Monitor Simulation, Measurements and Machine Learning Application Studies for CERN Fixed Target Beamlines electron, extraction, experiment, target 476
 
  • L. Parsons França, M. Duraffourg, F. Roncarolo, F.M. Velotti
    CERN, Meyrin, Switzerland
  • E. Kukstas, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by CERN and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
The CERN fixed target experimental areas have recently acquired new importance thanks to newly proposed experiments, such as those linked to Physics Beyond Colliders (PBC) activities. Secondary Emission Monitors (SEMs) are the instruments currently used for measuring beam current, position and size in these areas. Guaranteeing their reliability, resistance to radiation and measurement precision is challenging. This paper presents the studies being conducted to understand ageing effects on SEM devices, to calibrate and optimise the SEM design for future use in these beamlines. These include feasibility studies for the application of machine learning techniques, with the objective of expanding the range of tools available for data analysis.
 
poster icon Poster WEP32 [1.173 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP32  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 02 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP43 Control Systems of DC Accelerators at KAHVELab controls, electron, PLC, GUI 512
 
  • T.B. Ilhan, A. Caglar, D. Halis
    YTU, Istanbul, Turkey, Turkey
  • A. Adiguzel, S. Oz
    Istanbul University, Istanbul, Turkey
  • H. Cetinkaya
    Dumlupinar University, Faculty of Science and Arts, Kutahya, Turkey
  • E. Elibollar, M.F. Er, A. Inanc, E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • U. Kaya
    Istinye University, Institute of Sciences, Istanbul, Turkey
  • A. Ozbey
    IUC, Istanbul, Turkey
  • G. Türemen
    TENMAK-NUKEN, Ankara, Turkey
  • G. Unel
    UCI, Irvine, California, USA
 
  KAHVE Laboratory has two functional particle sources: thermal electrons and ionized hydrogen. Each of these are followed by DC acceleration sections, for obtaining an electron beam to accelerate electrons MeV energy level and for providing protons to the radio frequency quadrupole accelerator which are being built. So far both systems have keV energy levels. Both systems employ LabVIEW based GUIs to interact with the user and to control and monitor the DC power supplies. The vacuum gauges, turbomolecular pumps, stepper motors and high voltage power supplies are all controlled with PLCs. The equipment under high voltage, are monitored and controlled via Arduino based wifi and bluetooth wireless communication protocols. The proton beamline has additional devices for beam diagnostics which are being commissioned like pepper pot plate, scintillator screen and faraday cup. Both systems are being standardize before MeV energy level for generalize to national labs which are working on detectors and accelerators. We believe such a setup could be a low budget control and readout example for modern small experiments and educational projects.  
poster icon Poster WEP43 [14.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP43  
About • Received ※ 11 October 2022 — Revised ※ 18 October 2022 — Accepted ※ 25 October 2022 — Issue date ※ 07 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3C2 Time-Resolved Proton Beam Dosimetry for Ultra-High Dose-Rate Cancer Therapy (FLASH) cyclotron, radiation, detector, photon 519
 
  • P. Casolaro, S. Braccini, G. Dellepiane, A. Gottstein, I. Mateu, P. Scampoli
    AEC, Bern, Switzerland
  • P. Scampoli
    Naples University Federico II, Napoli, Italy
 
  Funding: This project was partially funded by the Bern Center for Precision Medicine (BCPM) of the University of Bern, and by the Swiss National Science Foundation (SNSF) [Grant: CRSII5180352]
A new radiotherapy modality, known as FLASH, is a potential breakthrough in cancer care as it features a reduced damage to healthy tissues, resulting in the enhancement of the clinical benefit. FLASH irradiations are characterized by ultra-high dose-rates (>40 Gy/s) delivered in fractions of a second. This represents a challenge in terms of beam diagnostics and dosimetry, as detectors used in conventional radiotherapy saturate or they are too slow for the FLASH regime. In view of the FLASH clinical translation, the development of new dosimeters is fundamental. Along this line, a research project is ongoing at the University of Bern aiming at setting-up new beam monitors and dosimeters for FLASH. The proposed detection system features millimeter scintillators coupled to optical fibers, transporting light pulses to a fast photodetector, readout by high bandwidth digitizers. First prototypes were exposed to the 18 MeV proton beam at the Bern medical cyclotron. The new detectors have been found to be linear in the range up to 780 Gy/s, with a maximum time resolution of 100 ns. These characteristics are promising for the development of a new class of detectors for FLASH radiotherapy.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C2 [5.378 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C2  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 23 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3C3 Fast Spill Monitor Studies for the SPS Fixed Target Beams detector, extraction, photon, target 522
 
  • F. Roncarolo, P.A. Arrutia Sota, D. Belohrad, E. Calvo Giraldo, E. Effinger, M.A. Fraser, V. Kain, M. Martin Nieto, S. Mazzoni, I. Ortega Ruiz, J. Tan, F.M. Velotti, C. Zamantzas
    CERN, Meyrin, Switzerland
  • M. Bergamaschi
    MPI-P, München, Germany
 
  At the CERN Super Proton Synchrotron (SPS) the proton beam is supplied to the fixed target experiments in the North Area facility (NA) via a slow extraction process, taking place at 400 GeV. The monitoring of the spill quality during the extraction, lasting 4.8 seconds with the present SPS setup, is of high interest for minimising beam losses and providing the users with uniform proton-on-target rates. The monitor development challenges include the need for detecting, sampling, processing and publishing the data at rates ranging from few hundred Hz to support the present operation to several hundreds of MHz to serve future experiments proposed within the Physics Beyond Collider (PBC) programme. This paper will give an overview of the ongoing studies for optimizing the existing monitors performances and of the R&D dedicated to future developments. Different techniques are being explored, from Secondary Emission Monitors to Optical Transition Radiation (OTR), Gas Scintillation and Cherenkov detectors. Expected ultimate limitations from the various methods will be presented, together with 2022 experimental results, for example with a recently refurbished OTR detector.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C3 [2.339 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C3  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 26 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3C4 Simulated Behavior of CNT Wires Irradiated in the HiRadMat Experimental Line at CERN electron, radiation, experiment, site 527
 
  • A. Mariet, B. Moser, R. Veness
    CERN, Meyrin, Switzerland
  • M. Devel, J.E. Groetz
    UFC, Besançon, France
  • A. Mikhalchan, J.J. Vilatela
    IMDEA, Madrid, Spain
 
  With the planned increase of luminosity at CERN for HL-LHC and FCC, instruments for beam quality control must meet new challenges. The current wires, made up of plain carbon fibers and gold-plated tungsten would be damaged due to their interactions with the higher luminosity beams. We are currently testing a new and innovative material, with improved performance: carbon nanotube fibers (CNTF). The HiRadMat (High Radiation for Material) experimental line at the output of the SPS is a user facility which can irradiate fix targets up to 440 GeV/c. CNTF with various diameters were irradiated in HiRadMat with different intensities, later imaged with a SEM microscope and tested for their mechanical properties. In addition, simulations have been carried out with the FLUKA particle physics Monte-Carlo code, in order to better understand the mechanisms and assess the energy deposition from protons at 440 GeV/c in those CNTF wires, depending mainly on their diameters and densities. This could lead to a good estimation of the CNTF temperature during irradiation. In this contribution, we first present the HiRadMat experimental setup and then we discuss the results of our FLUKA simulations.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE3C4 [4.793 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WE3C4  
About • Received ※ 07 September 2022 — Revised ※ 11 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 27 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)