Keyword: diagnostics
Paper Title Other Keywords Page
MO1C3 Development of a 6D Electron Beam Diagnostics Suite for Novel Acceleration Experiments at FEBE on CLARA electron, laser, experiment, acceleration 1
 
  • T.H. Pacey, D. Angal-Kalinin, A.R. Bainbridge, J. Henderson, J.K. Jones, N.Y. Joshi, S.L. Mathisen, A.E. Pollard, Y.M. Saveliev, E.W. Snedden, C. Tollervey, D.A. Walsh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, A.R. Bainbridge, J.K. Jones, T.J. Overton, Y.M. Saveliev, C. Swain, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • N.Y. Joshi
    UMAN, Manchester, United Kingdom
  • T.J. Overton
    The University of Manchester, Manchester, United Kingdom
  • C. Swain, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
 
  The FEBE beamline at the CLARA facility will combine a 250 MeV FEL quality electron beam with a 100 TW class laser. One area of research FEBE will support is novel acceleration schemes; both structure and plasma based. There are stringent diagnostic requirements for measuring the input electron beam and challenges in characterisation of the accelerated beams produced by these novel schemes. Several of these challenges include measurement of: micrometer scale transverse profiles, 10 fs scale bunch lengths, single shot emittance, broadband energy spectra at high resolution, and laser-electron time of arrival jitter. Furthermore, novel shot-by-shot non-invasive diagnostics are required for machine learning driven optimisation and feedback systems. This paper presents an overview of R&D activities in support of developing a 6D diagnostics suite to meet these challenges.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO1C3 [3.008 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MO1C3  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 13 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP02 An Optical Diagnostic Beamline for the Bessy II Booster booster, cavity, injection, operation 19
 
  • T. Atkinson, J.-G. Hwang, G. Rehm, M. Ries, G. Schiwietz, S. Wiese
    HZB, Berlin, Germany
 
  As part of the global refurbishment of the injector at BESSY II, a new optical beamline has been installed in the booster. This paper covers the conceptual design: incorporating the beamline into an operational facility without downtime, the simulation and expectations of the optical transport line, mechanical installation and commissioning with beam. These first results with the present beam delivery system have already achieved source point imaging and bunch length measurements using a fast diode. With the additional PETRA cavity installed for this booster upgrade and connection to acquire RF power in the 2022 summer shutdown planned, the bunch length diagnostics are critical. The beamline will also undergo a final mechanical upgrade and then see the installation of a streak camera.  
poster icon Poster MOP02 [0.975 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP02  
About • Received ※ 05 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 December 2022 — Issue date ※ 12 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP26 Bunch Length Measurement Systems at S-DALINAC* cavity, target, electron, linac 96
 
  • A. Brauch, M. Arnold, J. Enders, L.E. Jürgensen, N. Pietralla, S. Weih
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Work supported by DFG (GRK 2128) and the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006).
A high-quality beam is necessary for electron scattering experiments at the superconducting Darmstadt electron linear accelerator S-DALINAC. An optimization of the bunch length to typical values of < 2 ps is performed to reach a high energy resolution of 1e-4. Currently, this is accomplished by inducing a linear momentum spread on the bunch in one of the accelerating cavities. The bunch length can then be measured with a target downstream. This method is time consuming and provides only an upper limit of the bunch length. Two new setups for bunch length measurements will improve the optimization process significantly. On the one hand, a new diagnostic beam line is set up in the low energy beam area. It includes a deflecting copper cavity used for measuring the bunch length by shearing the bunch and projecting its length on a target. On the other hand, a streak camera placed at different positions downstream the injector and the main linac will be used to measure the bunch length. Optical transition radiation from an aluminium coated kapton target is used to perform this measurement. The present layout of both systems and their current status will be presented in this contribution.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP26  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 12 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP34 New X-Rays Diagnostics at ESRF: The X-BPMs and the Halo-Monitor electron, SRF, vacuum, detector 125
 
  • E. Buratin, K.B. Scheidt
    ESRF, Grenoble, France
 
  Two new X-ray diagnostics have been installed in the Front-Ends of the Storage Ring of the ESRF’s Extremely Brilliant Source (EBS) recently. Two independent optical X-BPMs at 23m distance from their bending magnet source-point are giving extremely useful additional information on the vertical beam stability in comparison to the e-BPMs data. A vertical beam Halo-monitor allows to measure permanently and quantitatively the level the electron density at large distance (1-3mm) from the beam core, in a non-destructive manner.  
poster icon Poster MOP34 [1.198 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP34  
About • Received ※ 30 August 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP21 Scintillator Nonproportionality Studies at PITZ FEL, electron, MMI, experiment 277
 
  • A.I. Novokshonov, G. Kube, S. Strokov
    DESY, Hamburg, Germany
  • Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, M. Groß, C. Koschitzki, M. Krasilnikov, X. Li, O. Lishilin, A. Lueangaramwong, D. Melkumyan, F. Mueller, A. Oppelt, H.J. Qian, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
 
  A standard technique to measure beam profiles in linear accelerators are screen monitors using scintillating screens. This technique is used e.g. at the European XFEL in order to overcome coherence effects in case of OTR usage [*]. During the XFEL commissioning it was found out that screens based on LYSO:Ce as scintillating material revealed a nonproportional light output [**]. Reason for it is the high particle beam density. As consequence it was decided to exchange LYSO:Ce by GAGG:Ce scintillators because the excitation carriers can rapidly transfer their energy to excited states of gadolinium, and a rapid migration of this energy among the Gd sub-lattice is expected. Driven by the observations at XFEL a series of measurements was started to investigate the properties of various scintillator materials (LYSO:Ce, YAP:Ce, YAG:Ce, LuAG:Ce and GAGG:Ce). The last measurement campaign was carried out at PITZ which allows to operate at higher beam charge and lower electron energy compared to the XFEL. The present work summarizes the results of these measurements.
* S.Wesch and B.Schmidt, in Proc. DIPAC’11, Hamburg, WEOA01, pp. 539-543.
** G.Kube, A.Novokshonov, S.Liu, M.Scholz, in Proc. FEL’19, Hamburg, WEB01, pp. 301-306.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP21  
About • Received ※ 11 September 2022 — Revised ※ 13 September 2022 — Accepted ※ 11 October 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP28 Coherent Difraction Radiation for Longitudinal Electron Beam Characteristics radiation, electron, FEL, linac 291
 
  • R. Panaś
    NSRC SOLARIS, Kraków, Poland
  • A. Curcio
    CLPU, Villamayor, Spain
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
 
  For the needs of diagnostics of the longitudinal electron beam characteristics at the first Polish free electron laser (PolFEL) project, a Coherent Diffraction Radiation (CDR) system is being developed and tested. It will allow for nondestructive bunch length measurement based on the power balance of CDR radiation collected by Schottky diodes in different ranges of sub-THz radiation. The first tests and measurements will be performed at the end of the Solaris synchrotron injector linac, where the beam profile is already known from previous studies. In addition the camera system with automatic focus was developed and tested. In this contribution the theoretical background of the measurement, calculations and first experimental steps will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP28  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 13 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP31 The Cryogenic Current Comparator at CRYRING@ESR detector, cryogenics, dipole, storage-ring 300
 
  • L. Crescimbeni, D.M. Haider, A. Reiter, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • F. Schmidl
    FSU Jena, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  Funding: Work supported by the BMBF under contract No. 05P21SJRB1.
The Cryogenic Current Comparator (CCC) at the heavy-ion storage ring CRYRING@ESR at GSI provides a calibrated non-destructive measurement of beam current with a resolution of 10 nA or better. With traditional diagnostics in storage rings or transfer lines a non-interceptive absolute intensity measurement of weak ion beams (< 1 µA) is already challenging for bunched beams and virtually impossible for coasting beams. Therefore, at these currents the CCC is the only diagnostics instrumentation that gives reliable values for the beam intensity independently of the measured ion species and without the need for tedious calibration procedures. Herein, after a brief review of the diagnostic setup, an overview of the operation of the CCC with different stored ion beams at CRYRING is presented. The current reading of the CCC is compared to the intensity signal of various standard instrumentations including a Parametric Current Transformer (PCT), an Ionization Profile Monitor (IPM) and the Beam Position Monitors (BPMs). It was shown that the CCC is a reliable instrument to monitor changes of the beam current in the range of nA.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP31  
About • Received ※ 06 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 19 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP38 Deep Neural Network for Beam Profile Classification in Synchrotron network, operation, emittance, synchrotron 323
 
  • M. Piekarski
    NSRC SOLARIS, Kraków, Poland
 
  Funding: The presented work has been achieved in collaboration with AGH University of Science and Technology in Kraków as a part of a PhD thesis.
The main goal of NSRC SO­LARIS is to pro­vide sci­en­tific com­mu­nity with high qual­ity syn­chro­tron light. To achieve this, it is necessary to constantly monitor many subsystems responsible for beam stability and to analyze data about the beam itself from various diagnostic beamlines. In this work a deep neural net­work for transverse beam profile classification is pro­posed. Main task of the system is to automatically assess and classify transverse beam profiles based solely on the evaluation of the beam image from the Pinhole diagnostic beamline at SOLARIS. At the present stage, a binary assignment of each profile is performed: stable beam operation or unstable beam operation / no beam. Base model architecture consists of a pre-trained con­vo­lu­tional neural net­work followed by a densely-connected classifier and the system reaches accuracy at the level of 90%. The model and the results obtained so far are discussed, along with plans for future development.
 
poster icon Poster TUP38 [0.376 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP38  
About • Received ※ 30 August 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP39 Neural Network Inverse Models for Implicit Optics Tuning in the AGS to RHIC Transfer Line quadrupole, network, operation, controls 327
 
  • J.P. Edelen, N.M. Cook, J.A. Einstein-Curtis
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Brown, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0019682
One of the fundamental challenges of using machine-learning-based inverse models for optics tuning in accelerators, particularly transfer lines, is the degenerate nature of the magnet settings and beam envelope functions. Moreover, it is challenging, if not impossible, to train a neural network to compute correct quadrupole settings from a given set of measurements due to the limited number of diagnostics available in operational beamlines. However, models that relate BPM readings to corrector settings are more forgiving, and have seen significant success as a benchmark for machine learning inverse models. We recently demonstrated that when comparing predicted corrector settings to actual corrector settings from a BPM inverse model, the model error can be related to errors in quadrupole settings. In this paper, we expand on that effort by incorporating inverse model errors as an optimization tool to correct for optics errors in a beamline. We present a toy model using a FODO lattice and then demonstrate the use of this technique for optics corrections in the AGS to RHIC transfer line at BNL.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP39  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 12 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP15 XFEL Photon Pulse Measurement Using an All-Carbon Diamond Detector detector, FEL, photon, experiment 416
 
  • C. Bloomer, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • W. Freund, J. Grünert, J. Liu
    EuXFEL, Schenefeld, Germany
  • M.E. Newton
    University of Warwick, Coventry, United Kingdom
 
  The European XFEL can generate extremely intense, ultra-short X-ray pulses at MHz repetition rates. Single-crystal CVD diamond detectors have been used to transparently measure the photon beam position and pulse intensity. The diamond itself can withstand the power of the beam, but the surface electrodes can be damaged since a single pulse can already exceed the damage threshold of the electrode material. Presented in this work are pulse intensity and position measurements obtained at the European XFEL using a new type of all-carbon single-crystal diamond detector developed at Diamond Light Source. Instead of traditional surface metallisation, the detector uses laser-written graphitic electrodes buried within the bulk diamond. There is no metallisation in the XFEL X-ray beam path that could be damaged by the beam. The results obtained from a prototype detector are presented, capable of measuring the intensity and 1-dimensional X-ray beam position of individual XFEL pulses. These successful measurements demonstrate the feasibility of all-carbon diagnostic detectors for XFEL use.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP15  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP17 Electron Emission (SEM) Grids for the FAIR Proton Linac linac, proton, electron, experiment 426
 
  • J. Herranz
    Proactive Research and Development, Sabadell, Spain
  • I. Bustinduy, .A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
  • P. Forck, T. Sieber
    GSI, Darmstadt, Germany
  • A. Navarro Fernandez
    CERN, Meyrin, Switzerland
 
  New SEM-Grid has been developed for FAIR Proton Linac, the instrument consists of 2 harps fixed together in an orthogonal way. This SEM-Grid will provide higher resolution and accuracy measurements as each harp consists of 64 tungsten wires 100 micro-meter in diameter and 0.5 mm pitch. Each wire is fixed to a ceramic PCB with an innovative dynamic stretching system, this system assures wire straightness under typical thermal expansion due to beam heat deposition. Electric field distribution has been performed, 3 main parameters have been optimized, wires distribution, quantity of polarization electrodes and distance between electrodes and wires. The design and production of the SEM-Grids have been performed by the company Proactive R&D that has count on the expertise of ESS-Bilbao to define safe operation limits and signal estimation by means of a code developed specifically for this type of calculations. Preliminary validations of the first prototypes shown good values of electric field behaviour signal. After additional beam test validations to be performed on June 2022, final series of the SEM-Grid will be produced and installed on FAIR proton LINAC.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP17  
About • Received ※ 07 September 2022 — Revised ※ 15 September 2022 — Accepted ※ 18 September 2022 — Issue date ※ 22 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP20 Emittance Diagnostics at PETRA IV emittance, synchrotron, radiation, photon 430
 
  • M. Marongiu, G. Kube, M. Lantschner, A.I. Novokshonov, K. Wittenburg
    DESY, Hamburg, Germany
 
  The PETRA IV project will be a Diffraction Limited Light Source designed to be the successor of PETRA III, the 6 GeV 3rd generation hard X-Ray synchrotron light source at DESY in Hamburg. It will operate at a beam energy of 6 GeV with a design emittance of 20/4 pm rad. For a precise emittance online control, two dedicated diagnostics beamlines will be built up to image the beam profile with synchrotron radiation in the X-Ray region. With two beamlines, it will be possible to extract both the transverse beam emittances and the beam energy spread. Both beamlines will be equipped with two interchangeable X-Ray optical systems: a pinhole camera system to achieve high dynamic range and a Fresnel Diffractometry system for high resolution measurements in the range 1-18 um. This paper describes the planned setup and deals with the possible limitations.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP20  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP33 Operational and Beam Study Results of Measurements with the Transverse Feedback System at the Canadian Light Source feedback, storage-ring, experiment, damping 481
 
  • S.J. Martens
    University of Saskatchewan, Saskatoon, Canada
  • T. Batten, D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
 
  A transverse bunch-by-bunch feedback system has been installed in the storage ring at the Canadian Light Source (CLS) to counteract beam instabilities. The 2.9 GeV electron storage ring is 171~m in circumference with 13 insertion devices currently installed, each contributing to the impedance of the ring and lowering the instability threshold. The new Transverse Feedback System (TFBS) provides improved bunch isolation, higher bandwidth amplification and diagnostics to study, understand and damp these instabilities. This paper will show and overview of the system setup, examples of operational performance and results of the diagnostic capabilities, including tune feedback, grow/damp measurements and excite/damp measurements.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP33  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 18 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP34 Orbit Correction Upgrade at the Canadian Light Source hardware, software, electron, wiggler 485
 
  • T. Batten, M. Bree, J.M. Vogt
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source is a 3rd generation synchrotron that began user operations in 2005 and now supports 22 operational beamlines. The orbit correction system was upgraded in 2021 to improve machine reliability and performance. This upgrade has also increased the diagnostic capabilities and supports easy integration of new functionality, providing the foundation for future enhancements.  
poster icon Poster WEP34 [1.209 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP34  
About • Received ※ 02 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 15 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)